
Preimage attacks on round-reduced MD5, SHA-1,

and SHA-256 using parameterized SAT solver

Oleg Zaikin1

1ISDCT SB RAS, Lermontov street 134, Irkutsk, 664033, Russia.

Contributing authors: oleg.zaikin@icc.ru;

Abstract

MD5, SHA-1, and SHA-256 are fundamental cryptographic hash functions that
produce a hash of fixed size given a message of arbitrary finite size. Their core
components are compression functions. The MD5 compression function operates
in 4 rounds of 16 steps each, while that of SHA-1 and SHA-256 operate in 80
and 64 rounds, respectively. It is computationally infeasible to invert these com-
pression functions, i.e., to find an input given an output. In 2012, 28-step MD5,
23-round SHA-1, and 16-round SHA-256 compression functions were reduced to
SAT and inverted by Conflict-Driven Clause Learning solvers, yet no progress
in this area has been made since then. The present paper proposes to construct
intermediate inverse problems for any pair of MD5 steps (i, i+1) such that the
first problem is very close to inverting i steps, while the last one is almost invert-
ing i + 1 steps. The same idea works for a pair of sequential rounds in case of
SHA-1 and SHA-256. SAT encodings of intermediate problems for MD5, SHA-
1, and SHA-256 were constructed, and then a Conflict-Driven Clause Learning
solver was parameterized on the simplest of them. The parameterized solver was
used to design a parallel Cube-and-Conquer solver that for the first time inverted
29-step MD5, 24-round SHA-1, and 19-round SHA-256 compression functions.

Keywords: Cryptographic hash function, Preimage attack, SAT, CDCL, Algorithm
configuration, Cube-and-Conquer

1 Introduction

A cryptographic hash function maps a message of arbitrary finite size to a hash of a
fixed size. In the modern digital world, such functions are pervasive for verifying pass-
words, data integrity, and digital signatures. A secure cryptographic hash function

1



must be resistant to preimage attacks, i.e., it must be computationally infeasible to
invert it by finding a message for a given hash. The present paper is aimed at study-
ing the preimage resistance of the MD5, SHA-1, and SHA-256 cryptographic hash
functions. The first two of them are obsolete, while SHA-256 is still secure and widely
used.

Given a message, MD5 produces a 128-bit hash by iteratively applying a com-
pression function to 512-bit message blocks. The compression function operates on a
128-bit internal state in 4 rounds of 16 steps each. In each step, the state is modified
by mixing with one 32-bit message word. SHA-1 and SHA-256 have similar designs,
but differ in the hash length and the way in which compression functions deal with
512-bit message blocks.

Compression functions are the most important components of the considered cryp-
tographic hash functions. Since it is still infeasible to invert MD5, SHA-1, and SHA-256
compression functions, their weakened versions are usually attacked, where some last
operations are omitted. In 2007, 26-step MD5 compression function was inverted [1],
while for 27- and 28-step versions it was done in 2012 [2]. In 2008 and 2012, 22- and
23-round SHA-1 compression functions were inverted, respectively [2, 3]. In 2012, 16-
round SHA-256 compression function was inverted [4]. All these problems were reduced
to SAT and solved via SAT solvers based on the Conflict-Driven Clause Learning
algorithm (CDCL) [5]. It can be concluded that CDCL solvers are especially efficient
in attacking cryptographic hash functions’ preimage resistance. However, since 2012,
no further progress has been made towards inverting more complex MD5, SHA-1, or
SHA-256 compression functions. This paper aims to fill these gaps.

When the number of operations in a cryptographic hash function is reduced, an
inverse problem can be further simplified by reducing the number of known hash
bits [6, 7]. For example, 29-step MD5 compression function and 64 known output
bits instead of 128 can be considered. However, even if this inverse problem is solved,
it is not clear if any progress compared to inversion of 28-step MD5 compression
function has been made as a result. Indeed, for a certain solver the former problem
might be harder than the latter one, while for another solver it might be vice versa.
It is also possible to weaken an inverse problem by partially assigning some bits in a
message [6, 8]. However, again, it is unclear whether such weakening contributes to
progress or not.

This paper proposes a new type of intermediate inverse problems. Consider an
arbitrary cryptographic hash function such that its compression function is divided
into some basic operations (steps in MD5 or rounds in SHA-1 and SHA-256) and in
each operation a k-bit message word m is mixed with an internal state. Note that most
existing cryptographic hash functions match this condition. Consider a pair (i, i+1) of
operations. The idea is to construct k−1 intermediate inverse problems by simplifying
operation i + 1, while the first i operations are left unmodified. In the first problem,
in operation i+ 1 the k-bit message word m is replaced by a k-bit word, where k − 1
bits are constants, while the remaining bit is equal to the corresponding bit in m. In
the second problem, k− 2 bits are constants, while 2 remaining bits are equal to that
in m and so on. Finally, in the (k− 1)th problem, only one bit is constant in the k-bit
word. As a result, for a state-of-the-art CDCL solver the first intermediate problem

2



is slightly harder than inverting i operations, then the hardness gradually increases
towards inverting i+ 1 operations.

We construct SAT encodings of 31 intermediate inverse problems between 28- and
29-step MD5 compression functions for one regular hash. Some of them are solved via
a state-of-the-art CDCL solver Kissat in a reasonable time. Then we automatically
identify Kissat’s parameters values that minimize total runtime on several simple
intermediate problems, and as a result more intermediate problems are solved by the
parameterized solver. Then a parallel Cube-and-Conquer solver based on the same
parameterized Kissat inverts 29-step MD5. Kissat is parameterized in the same way
on SHA-1 and SHA-256, and as a result the parallel solver inverts 24-round SHA-
1, 24.125-round SHA-1, and 19-round SHA-256. Here “24.125” means that the 4th
intermediate inverse problem between rounds 24 and 25 of SHA-1 is solved.

In summary, the contributions of the paper are as follows.

• A new type of intermediate inverse problems for a wide class of cryptographic hash
functions is proposed.

• An approach for solving an inverse problem via parameterizing a CDCL solver on
simple intermediate inverse problems is proposed.

• New SAT encoding of MD5 is proposed.
• An approach for predicting hardness of an inverse problem is proposed.
• For the first time, 29-step MD5 compression function is inverted.
• For the first time, 24-round and 24.125 SHA-1 compression functions are inverted.
• For the first time, 19-round SHA-256 compression function is inverted.

Since MD5 and SHA-1 are obsolete, the results related to them should be regarded
as proof of concept of the proposed approach. In contrast, the results for SHA-256 are
of practical interest in terms of security.

This paper is an extended version of a paper accepted at the 30th International
Conference on Principles and Practice of Constraint Programming (CP 2024) [9]. The
main extensions are as follows.

1. The preimage resistance of MD5, SHA-1, and SHA-256 is analyzed, while in [9]
only MD5 and SHA-1 were considered.

2. 24.125-round SHA-1 compression function is inverted, while in [9] it was done for
at most 24 rounds.

3. Two SAT encodings are built and compared, while in [9] only one SAT encoding
was considered.

4. The SAT encoding of intermediate inverse problems from [9] is improved.
5. An algorithm for predicting hardness of inverse problems is additionally proposed.

The paper is structured as follows. Preliminaries on SAT and cryptographic hash
functions are given in Section 2. Section 3 proposes intermediate inverse problems. SAT
encodings are presented and compared in Section 4. Kissat is applied to intermediate
inverse problems in Section 5. Section 6 describes how Kissat is parameterized on
intermediate inverse problems. The parameterized versions of Kissat are applied to
invert round-reduced MD5, SHA-1, and SHA-256 compression functions in Section 7.
Finally, the results and related work are discussed and conclusions are drawn.

3



2 Preliminaries

This section gives preliminaries on SAT and describes the cryptographic hash functions
MD5, SHA-1, and SHA-256.

2.1 Boolean satisfiability problem

Consider a set V of Boolean variables. Using the standard logical operators ¬,∧,∨,
propositional Boolean formulae are defined inductively as follows:

1. v ∈ V is a propositional Boolean formula;
2. if F is a propositional Boolean formula, then (¬F ) is a propositional Boolean

formula;
3. if F and G are propositional Boolean formulae, then (F ∨ G) and (F ∧ G) are

propositional Boolean formulae.

A propositional Boolean formula is satisfiable if there exists a truth assignment to
the variables that satisfies it; otherwise it is unsatisfiable. The Boolean satisfiability
problem (SAT ) is to determine whether a given propositional Boolean formula is satis-
fiable or not [10]. A literal is a Boolean variable or its negation. A clause is a disjunction
of literals. A propositional Boolean formula is in Conjunctive Normal Form (CNF), if it
is a conjunction of clauses. SAT is historically the first NP-complete problem [11], but
it also has a practical merit since the main complete SAT solving algorithm, Conflict-
Driven Clause Learning (CDCL) [5], has been successfully applied recently to problems
from the following areas: model checking, planning, combinatorics, bioinformatics, and
cryptanalysis. SAT-based cryptanalysis consists in reducing a cryptanalysis problem
to SAT and solving the instance by a SAT solver [12]. In the last two decades, SAT-
based cryptanalysis has been successfully applied to stream ciphers, block ciphers,
and cryptographic hash functions. In the present paper, SAT-based cryptanalysis is
applied to cryptographic hash functions.

2.2 Cryptographic hash function

A cryptographic hash function h maps a message of arbitrary finite size to a hash of
finite size [13]. An obligatory property of any cryptographic hash function is that the
mapping must be easy to compute, but hard to invert. Consider the following types
of resistance.

1. Collision resistance: it is infeasible to find any two messages x and x′ such that
x ̸= x′, h(x) = h(x′).

2. Preimage resistance: for any given hash y, it is infeasible to find a message x′ such
that h(x′) = y.

3. Second-preimage resistance: for any given message x, it is infeasible to find x′ such
that x′ ̸= x, h(x) = h(x′).

A secure cryptographic hash function must possess all three properties. Usually in
practice the collision resistance is the weakest one among them. There are two types
of preimage attacks: (i) practical preimage attack implies solving an inverse problem,

4



i.e., finding a preimage (message) for a certain hash; (ii) theoretical preimage attack is
an algorithm for solving an inverse problem with lower complexity than brute force.

The main component of most cryptographic hash functions is a compression func-
tion that maps an input of fixed size to an output of shorter fixed size. In order to
show that such a cryptographic hash function is not secure, it is sufficient to break
its compression function’s resistance. In this paper we focus on analyzing the practi-
cal preimage resistance of compression functions of the cryptographic hash functions
MD5, SHA-1, and SHA-256. In all of them, hash is produced in accordance with the
Merkle-Damg̊ard construction [14, 15], i.e., a message is divided into blocks and then
a compression function is iteratively applied to the blocks.

2.3 MD5

Message Digest 5 (MD5) is a cryptographic hash function proposed in 1992 [16]. It is a
more secure version of MD4 proposed in 1990 [17]. Given a message of arbitrary finite
size, padding is applied to obtain a message that can be divided into 512-bit blocks.
All message blocks are processed by a compression function and finally a 128-bit hash
is produced.

Consider the compression function in more detail. Given a 512-bit message block, it
produces a 128-bit output. The compression function consists of four rounds of sixteen
steps each, and operates by transforming data in four 32-bit registers A,B,C,D.
For the first message block, the registers are initialized with constants specified in
the standard. Otherwise, the registers are initialized with an output produced at the
previous iteration. The message block is divided into sixteen 32-bit words. In each
step, three registers are updated by permuting the current values, while one register
is updated by mixing one message word, the current values of all four registers, an
additive constant, and a result of the previous step. The mixing is partially done by
a round-specific function, while additive constants are step-specific. As a result, all
sixteen words take part in each round. When all steps are executed, the registers are
incremented by the values they had after the initialization, and then a 128-bit output
is produced as a concatenation of A,B,C,D.

Consider a pseudocode of an MD5 step in Algorithm 1. Here i, 1 ≤ i ≤ 64 is a step
number, t, 0 ≤ t ≤ 15 is a message word index, ⊞ is addition modulo 232, ≪ is the
left bit rotation, and K is a step-specific constant.

Algorithm 1 The i-th step of MD5.

Input: current registers’ values A,B,C,D; step number i; message word index t;
rotate value s; round function Func; constant K.
Output: updated values A,B,C,D.

1: temp← Func(B,C,D)⊞A⊞K ⊞M [t]
2: A← D
3: D ← C
4: C ← B
5: B ← B + (temp ≪ s)

5



The round functions are as follows, where all operators are bitwise.

• Round 1, steps 1–16: F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z).
• Round 2, steps 17–32: G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z).
• Round 3, steps 33-48: H(x, y, z) = x⊕ y ⊕ z.
• Round 4, steps 49–64: I(x, y, z) = y ⊕ (x ∨ ¬z).

Values of t, s, K, and Func for all 64 steps are specified in the standard [16]. Below,
values for the first three steps and the last step are given for illustration purposes,
while ones for steps 27, 28, and 29 are presented because the corresponding inverse
problems will be considered further in the computational experiments.

• Step 1: 0, 7, 0xd76aa478, F .
• Step 2: 1, 12, 0xe8c7b756, F .
• Step 3: 2, 17, 0x242070db, F .
• . . .
• Step 27: 3, 14, 0xf4d50d87, G.
• Step 28: 8, 20, 0x455a14ed, G.
• Step 29: 13, 5, 0xa9e3e905, G.
• . . .
• Step 64: 9, 21, 0xeb86d391, I.

In 2004, the first MD5 collisions were published [18]. Regardless, it is still preim-
age resistant and second-preimage resistant in practice. In 2009, the first theoretical
preimage attack on MD5 was proposed [19]. Practical preimage attacks on 26-, 27-,
and 28-step MD5 compression function are known in the literature [1, 2, 20]. Note that
SAT solvers were applied in all these practical preimage attacks. MD5 is deprecated
for cryptographic purposes due to existing vulnerabilities.

2.4 SHA-1

Secure Hash Algorithm 1 (SHA-1) was proposed in 1995 as another more secure
extension of MD4 [21]. The main differences compared to MD5 are listed below.

1. A 160-bit hash is produced.
2. The compression function operates in 80 rounds and returns a 160-bit output.
3. There are five 32-bit internal registers A,B,C,D,E.
4. New round functions are used.
5. There are four groups of rounds, such that in each group the same round function

and round constant are used.
6. Instead of using parts of a message block M directly in rounds, W is used such that

W [t] = M [t], 0 ≤ t ≤ 15, andW [t] = (W [t−3]⊕W [t−8]⊕W [t−14]⊕W [t−16]) ≪ 1
if 16 ≤ t ≤ 79.

The round functions are listed below. Here all operators are bitwise.

• Group 1, rounds 1–20: F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z).
• Group 2, rounds 21–40: G(x, y, z) = x⊕ y ⊕ z.
• Group 3, rounds 41–60: H(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

6



• Group 4, rounds 61–80: I(x, y, z) = x⊕ y ⊕ z.

Consider a pseudocode of an SHA-1 round in Algorithm 2. Recall that a round
number i varies from 1 to 80.

Algorithm 2 The i-th round of SHA-1.

Input: current registers’ values A,B,C,D,E; round number i; round group number
q; round function Func.
Output: updated values A,B,C,D,E.

1: temp← (A ≪ 5)⊞ Func(B,C,D)⊞ E ⊞K[q]⊞W [i− 1]
2: E ← D
3: D ← C
4: C ← B ≪ 30
5: B ← A
6: A← temp

A practical collision attack on SHA-1 exists [22], but it still remains preimage
resistant and second-preimage resistant. A theoretical preimage attack on 56-round
SHA-1 was proposed in [23]. Practical SAT-based preimage attacks on 22- and 23-step
SHA-1 compression function are known [2, 3]. Like MD5, SHA-1 is also deprecated for
cryptographic purposes.

2.5 SHA-256

Secure Hash Algorithm 2 (SHA-2) was proposed in 2001 as a family of six crypto-
graphic hash functions SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256 with hash sizes of 224, 256, 384, or 512 bits [24].

Hereinafter only SHA-256 is analyzed. Its main differences compared to SHA-1 are
listed below.

1. A 256-bit hash is produced.
2. The compression function operates in 64 rounds and returns a 256-bit output.
3. There are eight 32-bit internal registers A,B,C,D,E, F,G,H.
4. The same nonlinear functions are applied to update the registers’ values each round.
5. W is formed differently.

Consider the following functions, where ≫ denotes the right bit rotation, while
all remaining operators are bitwise:

• Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z);
• Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z);
• Σ0(x) = (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22);
• Σ1(x) = (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25);
• σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x ≪ 3);
• σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x ≪ 10).

7



Given a 512-bit message block M divided into 16 32-bit parts, W is formed as
follows:

• W [t] = M [t], 0 ≤ t ≤ 15;
• W [t] = σ1(W [t− 2])⊞W [t− 7]⊞ σ0(W [t− 15])⊞W [t− 16], 16 ≤ t ≤ 63;

Consider a pseudocode of an SHA-256 round in Algorithm 3. Round-specific con-
stants K[p], 0 ≤ p ≤ 63 are specified in the standard [24]. A round number i varies
from 1 to 64.

Algorithm 3 The i-th round of SHA-256.

Input: current registers’ values A,B,C,D,E, F,G,H; round number i.
Output: updated values A,B,C,D,E, F,G,H.

1: T1← H ⊞ Σ1(E)⊞ Ch(E,F,G)⊞K[i− 1]⊞W [i− 1]
2: T2← Σ0(A)⊞Maj(A,B,C)
3: H ← G
4: G← F
5: F ← E
6: E ← D ⊞ T1
7: D ← C
8: C ← B
9: B ← A

10: A← T1⊞ T2

SHA-256 is still collision resistant, preimage resistant, and second-preimage resis-
tant. A theoretical preimage attack on 52-round SHA-256 compression function is
known [25]. In [4], a practical SAT-based preimage attack on 16-step SHA-256 com-
pression function was proposed. Unlike MD5 and SHA-1, SHA-256 is still considered
secure. Also, it is widely used in practice, e.g., in Bitcoin mining and to verify
authenticity of Debian packages.

3 New type of intermediate inverse problems for
cryptographic hash functions

This section first proposes a new type of intermediate inverse problems for crypto-
graphic hash functions from a wide class, and then it describes how such problems can
be constructed for MD5, SHA-1, and SHA-256.

3.1 Intermediate inverse problems

Consider an arbitrary cryptographic hash function h with the following features:

1. h has a compression function f ;
2. the compression function f is divided into basic operations (e.g., steps in MD5 or

rounds in SHA-1 and SHA-256);

8



3. in each operation, an internal state is mixed with a message word m, where m is
either a message part (like in MD5) or a mix of message parts (like in SHA-1 and
SHA-256).

Consider a class of cryptographic hash functions based on the Merkle-Damg̊ard
construction [14, 15]. This class includes MD4, MD5, the RIPEMD family, SHA-0,
SHA-1, and the SHA-2 family. It is clear that all cryptographic hash functions from
the class fit the specified requirements. On the other hand, all cryptographic hash
functions constructed in accordance with the sponge construction, e.g., SHA-3, do not
fit the requirements.

During preliminary experiments, for different triples (a Merkle-Damg̊ard-based
cryptographic hash function, a SAT encoding, a CDCL solver) we attempted to invert
operation-reduced compression functions, where the last operation was weakened in
different ways. It turned out that if the usage of m is omitted in the last operation,
then this operation does not really make the inverse problem harder for the CDCL
solver. On the other hand, if m is used as usual, yet any other part of the last operation
is omitted (including the usage of a nonlinear round function), the inverse problem
is almost as hard as the original one. The corresponding details for MD5, SHA-1,
SHA-256 will be given in the next subsection.

Based on the above observation, let us propose the following notation. Consider
a compression function f that consists of r operations. In each operation, a k-bit
message word m is mixed with an internal state. Now consider two reduced versions
of f — with the first i and the first i+ 1 operations, where 1 ≤ i ≤ r − 1. Construct
k − 1 intermediate operation-reduced compression functions between them, such that
the first i operations are used as usual, yet operation i + 1 is weakened as follows.
In the j-th intermediate function, 1 ≤ j ≤ k − 1, the word m in operation i + 1 is
replaced by a word mweak such that the rightmost k − j bits in mweak are constants,
while the remaining j bits are equal to the leftmost j bits in m. Note that this is not
the same as replacing m by mweak in the whole f — if m is used in several operations,
then the proposed modification affects only operation i + 1. In the j-th intermediate
inverse problem it is needed to find a preimage (input) given an output produced by
the j-th intermediate operation-reduced compression function.

The intention behind this approach is that for a state-of-the-art CDCL solver
the first intermediate inverse problem will be slightly harder than the inversion of
i operations, then the hardness gradually increases towards the inversion of i + 1
operations.

Note that if for the j-th intermediate inverse problem between operations i and
i + 1 a preimage is found for an output, then with probability 1

2k−j the preimage
inverts the same output produced by unmodified i + 1 operations because k − j bits
of the corresponding word m can be considered as random bits that can coincide with
k − j constant bits with the mentioned probability. This is the first take away of the
proposed approach — if an intermediate inverse problem between operations i and
i + 1 is solved for some output, then with a nonzero probability i + 1 operations are
inverted for the same output.

9



3.2 Intermediate inverse problems for MD5, SHA-1, and
SHA-256

During preliminary experiments, we tried to weaken step i+1 of the MD5 compression
function for different values of i (within the second round) by removing Func(B,C,D)
from the addition in the first line of Algorithm 1. However, it did not lead to simpler
inverse problems from a state-of-the-art CDCL solver point of view. We also tried to
remove other addends in the first line addition, to delete the addend B from the fifth
line addition, and to omit rotating in the fifth line. It turned out that the only action
that significantly decreases the hardness is removing the addend M [t] in the first line.
Moreover, if M [t] is removed, then inverting i+ 1 steps is almost similar to inverting
i steps for a CDCL solver.

A pseudocode of an MD5 step weakened according to the proposed idea is presented
in Algorithm 4. Here for a k-bit word m the function Leftmostbits(m, j) returns a
k-bit word such that its leftmost j bits are equal to that of m, while the remaining
32 − j bits are equal to 0. To form 31 intermediate inverse problems with increasing
hardness, j should be varied from 1 to 31.

Algorithm 4 The (i+ 1)-th weakened step of MD5.

Input: current registers’ values A,B,C,D; step number (i+1); message word index t;
rotate amount s; round function Func; constant K; intermediate compression function
number j.
Output: updated values A,B,C,D.

1: weakM ← Leftmostbits(M [t], j)
2: temp← Func(B,C,D)⊞A⊞K ⊞ weakM
3: A← D
4: D ← C
5: C ← B
6: B ← B + (temp ≪ s)

The same pattern was revealed for SHA-1 and SHA-256 — when the usage of W is
omitted in round i+1, from a CDCL solver point of view an inverse problem becomes
almost the same as the inverse of the first i rounds. Again, omitting the usage of a
round function (or any other addends) does not really decrease the hardness. Based
on these results, intermediate inverse problems for SHA-1 and SHA-256 are formed in
the same way as for MD5. Pseudocode of an SHA-1/SHA-256 compression function’s
round weakened according to the proposed idea is presented in Algorithm 5 and 6.

In the rest of the paper, the j-th intermediate compression function between MD5
steps i and i + 1, 1 ≤ i ≤ 63, is called (i j

32)-step MD5. Note, that according to this

notation j = 32 corresponds to (i+ 1)-step MD5. Similarly, (i j
32)-round SHA-1 and

(i j
32)-round SHA-256 are denoted.

10



Algorithm 5 The (i+ 1)-th weakened round of SHA-1.

Input: current registers’ values A,B,C,D,E; round number (i + 1); round group
number q; round function Func; intermediate compression function number j.
Output: updated values A,B,C,D,E.

1: weakW ← Leftmostbits(W [i], j)
2: temp← (A ≪ 5)⊞ Func(B,C,D)⊞ E ⊞K[q]⊞ weakW
3: E ← D
4: D ← C
5: C ← B ≪ 30
6: B ← A
7: A← temp

Algorithm 6 The (i+ 1)-th weakened round of SHA-256.

Input: current registers’ values A,B,C,D,E, F,G,H; round number i + 1; interme-
diate compression function number j.
Output: updated values A,B,C,D,E, F,G,H.

1: weakW ← Leftmostbits(W [i], j)
2: T1← H ⊞ Σ1(E)⊞ Ch(E,F,G)⊞K[i]⊞ weakW
3: T2← Σ0(A)⊞Maj(A,B,C)
4: H ← G
5: G← F
6: F ← E
7: E ← D ⊞ T1
8: D ← C
9: C ← B

10: B ← A
11: A← T1⊞ T2

4 SAT encoding

In this section, two SAT encodings of the considered compression functions are
described and compared.

4.1 Description of encodings

Several SAT encodings of the SHA-1 compression function have been proposed so
far [2, 3, 6, 26]. However, it seems that at the moment the best one is Vegard Nossum’s
encoding [6]. Compared to the competitors, it produces CNFs which are easier for
CDCL solvers. That is why Nossum’s encoding has been used in many studies, e.g., [22,
27]. The paper [22] should be especially highlighted since it presented the first SHA-1
collision.

Recall that in each SHA-1 round a 5-ary addition is performed, see Subsection 2.4.
In Nossum’s encoding, the column addition algorithm is applied, and each column sum
is expressed via a pseudo-Boolean constraint, which is encoded in the clausal form

11



using the ESPRESSO logic minimizer [28]. Vegard Nossum implemented his encoding
in the form of the program sha1-sat that is available online1. Given a number of
rounds and an output, the program produces the corresponding inverse problem for
the SHA-1 compression function in the form of a CNF.

We decided to extend sha1-sat to support the MD5 compression function. Recall
that in each MD5 step a 4-ary addition is performed, so we constructed the correspond-
ing pseudo-Boolean constraint and encoded it in the clausal form using ESPRESSO.
As for the round functions (see Subsection 2.3), clausal forms of three of them were
taken from the SHA-1 encoding, while the remaining one was constructed manually.
The extended version is available online2.

As for SHA-256, we used the SAT-encoding program that is another implemen-
tation of Nossum’s encoding for MD4, SHA-1, and SHA-2563. This program was used
in [29] to attack SHA-256.

We also tried the Transalg tool [30] to produce SAT encodings. This tool trans-
lates algorithms written in a C-like domain-specific language called TA language into
CNFs. There are three reasons why we chose Transalg. First, it is mostly oriented
on cryptographic algorithms. Second, it has shown good efficiency when analyzing
cryptographic hash functions’ resistance [20, 31]. Third, TA programs for MD5, SHA-
1, and SHA-256 are already available online4, so we just took them and made CNFs
via Transalg version 1.1.6.

4.2 Comparison of SAT encodings

Appendix A contains eight random 256-bit sequences. The first 128/160/256 bits of
each sequence were used as a random output for MD5/SHA-1/SHA-256.

Consider the first 21-25 rounds of the SHA-1 compression function and 10 160-
bit outputs: 160 zero-bits, 160 one-bits, and eight random outputs described above.
For each pair (r, y), where r is a number of rounds and y is a 160-bit output, two
CNFs were constructed using Transalg and the extended version of sha1-sat. Each
CNF encodes an inverse problem: given y produced by an r-round SHA-1 compression
function, find any its preimage (input). Table 1 shows characteristics of the CNFs for
24 and 25 rounds. It is clear that Nossum’s encoding introduces about 2 times fewer
variables than that of Transalg, yet the number of literals is about 2.5 times higher.

As for MD5, CNFs were constructed for 27-30 steps for 128 zero-bits, 128 one-
bits, and eight random 128-bit outputs using Transalg and the extended version of
sha1-sat, see Table 1. Finally, CNFs were constructed for 17-19 rounds of SHA-256
for ten 256-bit outputs using Transalg and the extended version of SAT-encoding,
see Table 1. Similarly to SHA-1, Nossum’s encoding provided less variables but more
literals.

A state-of-the-art CDCL solverKissat version 4.0.1 [32] was run on all constructed
CNFs with a time limit of 1 day (24 hours) on a computer equipped with a 16-core CPU
AMD Ryzen 3950X and 64 Gb of RAM. This solver was chosen because it has shown
excellent results in the last five SAT Competitions. The results are shown as cactus

1https://github.com/vegard/sha1-sat
2https://github.com/olegzaikin/sha1-sat
3https://github.com/saeednj/SAT-encoding
4https://gitlab.com/satencodings/satencodings

12

https://github.com/vegard/sha1-sat
https://github.com/olegzaikin/sha1-sat
https://github.com/saeednj/SAT-encoding
https://gitlab.com/satencodings/satencodings


Table 1: Characteristics of CNFs for round-reduced compres-
sion functions.

Compression function Encoding Variables Clauses Literals

24-round SHA-1
Transalg 8 763 84 795 380 129
Nossum 4 448 138 764 913 620

25-round SHA-1
Transalg 9 011 87 582 393 724
Nossum 4 608 144 856 953 513

29-step MD5
Transalg 7 992 57 750 226 908
Nossum 7 392 95 770 524 232

30-step MD5
Transalg 8 235 59 664 234 470
Nossum 7 616 99 020 542 144

18-round SHA-256
Transalg 11 834 69 219 240 927
Nossum 9 070 151 508 899 012

19-round SHA-256
Transalg 12 644 74 662 260 438
Nossum 9 645 162 574 964 390

plots in Figure 1. For both encodings, all inverse problems were solved in case of 21-22
rounds of SHA-1, 27-28 rounds of MD5, and 17-18 rounds of SHA-256. Additionally,
one preimage for 23-round SHA-1 was found when using Nossum’s encoding. As a
result, this encoding outperformed Transalg for all compression functions, yet only
in case of SHA-1 the advantage was significant. In the rest of the paper only Nossum’s
encoding is used in the experiments.

4.3 Encoding intermediate inverse problems

In sha1-sat and SAT-encoding it should be written explicitly how a new operation
is encoded in the clausal form. We modified both tools to maintain intermediate inverse
problems. In case of SAT-encoding, the extended version is available online as well5.
Assume that it is needed to encode the j-th intermediate inverse problem between
operations i and i+ 1. The first approach is as follows.

1. An additional 32-bit word mweak is introduced in the form of 32 Boolean variables.
2. The equality conditions for the leftmost j bits of mweak and the corresponding j

bits of m are added in the form of j × 2 binary clauses6.
3. The rightmost 32− j bits of mweak are assigned to 0 via adding the corresponding

unit clauses.
4. 32 Boolean variables of mweak are used instead of m’s 32 variables in the clauses

that encode the addition in operation i+ 1.

According to the second approach, only 32 − j new variables are introduced to
encode the rightmost 32 − j bits of the 32-bit mweak, while the leftmost j bits of
mweak are encoded by the same variables that are used to encode the leftmost j bits
of the word m. As a result, no additional binary clauses are added to the CNF since
they are not needed anymore. In preliminary experiments the second approach turned

5https://github.com/olegzaikin/SAT-encoding
6The equality of Boolean variables x and y in the clausal form is (x ∨ ¬y.) ∧ (¬x ∨ y)

13

https://github.com/olegzaikin/SAT-encoding


2 5 7 10 12 15 17 20
instances

0

10000

20000

30000

40000

50000

60000

70000

CP
U 

tim
e 

(s
)

kissat4.0.1-nossum
kissat4.0.1-transalg

(a) SHA-1

2 5 7 10 12 15 17 20
instances

0

10000

20000

30000

40000

50000

60000

CP
U 

tim
e 

(s
)

kissat4.0.1-nossum
kissat4.0.1-transalg

(b) MD5

2 5 7 10 12 15 17 20
instances

0

20

40

60

80

100

CP
U 

tim
e 

(s
)

kissat4.0.1-nossum
kissat4.0.1-transalg

(c) SHA-256

Fig. 1: Kissat’s runtimes on CNFs that encode inverse problems.

out to be about 10% better runtime-wise, so in the rest of the paper only this approach
is used. Note that in [9] only the first approach was implemented.

Characteristics of CNFs for intermediate inverse problems are not presented here
since they just slightly differ from the standard ones described in the previous
subsection. Namely, there are 32-j more variables and literals in an intermediate CNF.

5 On runtimes of intermediate inverse problems

In the previous section, Kissat’s results on standard inverse problems for the SHA-1,
MD5, and SHA-256 compression functions were presented. In this section, we study
how Kissat behaves on intermediate inverse problems produced in accordance with
Nossum’s encoding. We also show how such runtimes can be used to predict runtimes
of hard inverse problems.

5.1 Solving intermediate inverse problems by Kissat

We considered 33 inverse problems for SHA-1: one for 22 rounds, 31 intermediate
problems between rounds 22-23, and one for 23 rounds. Similarly to Section 4, we
generated 10 instances for each problem — one for 160 one-bits, one for 160 zero-bits,
and eight for random outputs, i.e., 330 CNFs in total. Within a time limit of 1 day,

14



22
22

 1
/3

2
22

 2
/3

2
22

 3
/3

2
22

 4
/3

2
22

 5
/3

2
22

 6
/3

2
22

 7
/3

2
22

 8
/3

2
22

 9
/3

2
22

 1
0/

32
22

 1
1/

32
22

 1
2/

32
22

 1
3/

32
22

 1
4/

32
22

 1
5/

32
22

 1
6/

32
22

 1
7/

32
22

 1
8/

32
22

 1
9/

32
22

 2
0/

32
22

 2
1/

32
22

 2
2/

32
22

 2
3/

32
22

 2
4/

32
22

 2
5/

32
22

 2
6/

32
22

 2
7/

32
22

 2
8/

32
22

 2
9/

32
22

 3
0/

32
22

 3
1/

32 23

SHA-1 rounds

1 sec

1 min

1 hour

1 day

CP
U 

tim
e

27
27

 1
/3

2
27

 2
/3

2
27

 3
/3

2
27

 4
/3

2
27

 5
/3

2
27

 6
/3

2
27

 7
/3

2
27

 8
/3

2
27

 9
/3

2
27

 1
0/

32
27

 1
1/

32
27

 1
2/

32
27

 1
3/

32
27

 1
4/

32
27

 1
5/

32
27

 1
6/

32
27

 1
7/

32
27

 1
8/

32
27

 1
9/

32
27

 2
0/

32
27

 2
1/

32
27

 2
2/

32
27

 2
3/

32
27

 2
4/

32
27

 2
5/

32
27

 2
6/

32
27

 2
7/

32
27

 2
8/

32
27

 2
9/

32
27

 3
0/

32
27

 3
1/

32 28

MD5 steps

1 sec

1 min

1 hour

1 day

CP
U 

tim
e

17
 1

6/
32

17
 1

7/
32

17
 1

8/
32

17
 1

9/
32

17
 2

0/
32

17
 2

1/
32

17
 2

2/
32

17
 2

3/
32

17
 2

4/
32

17
 2

5/
32

17
 2

6/
32

17
 2

7/
32

17
 2

8/
32

17
 2

9/
32

17
 3

0/
32

17
 3

1/
32 18

18
 1

/3
2

18
 2

/3
2

18
 3

/3
2

18
 4

/3
2

18
 5

/3
2

18
 6

/3
2

18
 7

/3
2

18
 8

/3
2

18
 9

/3
2

18
 1

0/
32

18
 1

1/
32

18
 1

2/
32

18
 1

3/
32

18
 1

4/
32

18
 1

5/
32

18
 1

6/
32

SHA-256 rounds

1 sec

1 min

1 hour

1 day

CP
U 

tim
e

Fig. 2: Boxplots of Kissat runtimes on intermediate inverse problems.

323 instances were solved on the same 16-core computer as in Section 4. Figure 2
shows the runtimes in the logarithmic scale. The five-number statistics is presented in
the form of boxplots: outliers are plotted as small circles, whiskers correspond to the
minimum and the maximum (excluding outliers), a median is plotted in green, while
a box is plotted from the first quartile to the third quartile. In the boxplots, unsolved
instances’ values were set to 1 day.

Then 33 inverse problems and the corresponding 330 instances were considered for
MD5 and SHA-256 as well — between steps 27-28 and between rounds 17 16

32 and 18

15



16
32 , respectively. The results are shown in Figure 2. Within the same time limit, all
MD5 instances and 325 SHA-256 instances were solved.

According to the results, hardness of the intermediate inverse problems grows
almost linearly for MD5 and SHA-256. In case of SHA-1 the pattern is different. The
hardness is more or less the same for a series of problems, then a leap is observed and
the hardness remains the same for the next series and so on. A leap in hardness means
that the median time of any problem from a series is higher than that of the previous
series and lower than that of the next series. In the figure, three such series can be
seen for SHA-1: between rounds 22 and 22 1

32 , rounds 22 2
32 and 22 27

32 , and finally
rounds 22 28

32 and 23. Note that all 7 unsolved instances belong to the last series. In
the figure, the described series are divided by dashed vertical lines.

As mentioned in Section 2, it is sufficient to invert any hash to break the preim-
age resistance of a cryptographic hash function. The same holds for a compression
function — it is sufficient to invert any its output. However, in practice this should
be a regular output, say all zero-bits or all one-bits, otherwise it may be hard to jus-
tify this choice and prove that a random pair of input and output was not picked.
In the rest of the paper, 128 one-bits, 160 one-bits, and 256 one-bits are chosen as
given outputs for round-reduced MD5, SHA-1, and SHA-256 compression functions,
respectively. Further they are called 1-hashes.

Instances of intermediate inverse problems between rounds 23-24 of SHA-1, steps
28-29 of MD5, and rounds 18-19 of SHA-256 were generated for 1-hashes. Recall that
at most 28-step MD5, 23-round SHA-1, and 16-round SHA-256 are inverted in the
literature. Note that 17-round SHA-256 can be inverted easily, so it is not considered
further in the paper. Four intermediate problems for j = 16, 19, 20, 22 were solved by
Kissat with a time limit of 1 day in case of SHA-1. Ten MD5 intermediate problems for
j = 1, 2, 3, 4, 5, 7, 8, 10, 12, 14 were solved. In case of SHA-256, seventeen intermediate
inverse problems were solved for j = 1, . . . , 16 and j = 18. Therefore (23 22

32 )-round
SHA-1, (28 14

32 )-step MD5, and (18 18
32 )-round SHA-256 compression functions are

inverted, and this is already a clear progress compared to the literature, but in the
next sections we are going further.

The second take away of the approach proposed in Section 3 is as follows: by solving
intermediate inverse problems between operations i and i + 1, some progress can be
achieved compared to the state of the art, where at most i operations are inverted.

5.2 Predicting runtimes of hard inverse problems

We decided to apply regression analysis to predict Kissat’s runtimes of inverting 1-
hash produced by 24-round SHA-1, 29-step MD5, and 19-round SHA-256. For this
purpose, intermediate inverse problems between rounds 21-24 of SHA-1, steps 27-
29 of MD5, and rounds 18-19 of SHA-256 were considered for 1-hash. Some of the
corresponding CNFs and runtimes were taken from the previous subsection, yet the
remaining CNFs were generated and Kissat was run on them with a time limit of 1
day. Instances of rounds 17.5-18 of SHA-256 were excluded since they were too simple.
In total, runtimes of 97, 65, and 33 instances were analyzed for SHA-1, MD5, and
SHA-256, respectively. The runtimes are shown in Figure 3. There is a clear trend
that the runtime increases. On the other hand, it does not increase monotonically.

16



21
21

 2
/3

2
21

 4
/3

2
21

 6
/3

2
21

 8
/3

2
21

 1
0/

32
21

 1
2/

32
21

 1
4/

32
21

 1
6/

32
21

 1
8/

32
21

 2
0/

32
21

 2
2/

32
21

 2
4/

32
21

 2
6/

32
21

 2
8/

32
21

 3
0/

32 22
22

 2
/3

2
22

 4
/3

2
22

 6
/3

2
22

 8
/3

2
22

 1
0/

32
22

 1
2/

32
22

 1
4/

32
22

 1
6/

32
22

 1
8/

32
22

 2
0/

32
22

 2
2/

32
22

 2
4/

32
22

 2
6/

32
22

 2
8/

32
22

 3
0/

32 23
23

 2
/3

2
23

 4
/3

2
23

 6
/3

2
23

 8
/3

2
23

 1
0/

32
23

 1
2/

32
23

 1
4/

32
23

 1
6/

32
23

 1
8/

32
23

 2
0/

32
23

 2
2/

32
23

 2
4/

32
23

 2
6/

32
23

 2
8/

32
23

 3
0/

32 24

SHA-1 rounds

1 sec

1 min

1 hour

1 day

10 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction

27
27

 2
/3

2
27

 4
/3

2
27

 6
/3

2
27

 8
/3

2
27

 1
0/

32
27

 1
2/

32
27

 1
4/

32
27

 1
6/

32
27

 1
8/

32
27

 2
0/

32
27

 2
2/

32
27

 2
4/

32
27

 2
6/

32
27

 2
8/

32
27

 3
0/

32 28
28

 2
/3

2
28

 4
/3

2
28

 6
/3

2
28

 8
/3

2
28

 1
0/

32
28

 1
2/

32
28

 1
4/

32
28

 1
6/

32
28

 1
8/

32
28

 2
0/

32
28

 2
2/

32
28

 2
4/

32
28

 2
6/

32
28

 2
8/

32
28

 3
0/

32 29

MD5 steps

1 sec

1 min

1 hour

1 day

100 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction

18

18
 2

/3
2

18
 4

/3
2

18
 6

/3
2

18
 8

/3
2

18
 1

0/
32

18
 1

2/
32

18
 1

4/
32

18
 1

6/
32

18
 1

8/
32

18
 2

0/
32

18
 2

2/
32

18
 2

4/
32

18
 2

6/
32

18
 2

8/
32

18
 3

0/
32 19

SHA-256 rounds

1 sec

1 min

1 hour

1 day

200 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction

Fig. 3: Kissat’s runtimes on inverse problems for 1-hash and round-reduced MD5,
SHA-1, and SHA-256. The y-axis is in the logarithmic scale.

Consider the rightmost runtime in a figure. All runtimes to the left of it are con-
sidered as a dataset for regression analysis. For example, in case of SHA-1, the dataset
consists of all instances between round 21 and round 23 22

32 . It is clear that some run-
times are missing. It is well known that missing data negatively impacts regression
analysis. Various imputation methods exist which can handle this issue. We applied
the following simple method: runtime of the first instance, for which the solver had
been interrupted, was assigned to a doubled time limit (i.e., 2 days). It corresponds
to PAR-2 (Penalized Average Runtime with a factor of 2 score) that is usually used
in SAT Competitions to evaluate solvers’ performance.

17



An exponential relationship between an intermediate inverse problem number x
and a runtime y was observed. We decided to calculate the binary logarithm log2 y of
the runtimes to linearize the relationship and to apply the linear regression to predict
runtimes of the unsolved instances. For each compression function, the values a and
b in the equation log2 y = a + bx. were estimated by the ordinary least squares [33].
The corresponding regression lines are shown in Figure 3. As a result, the following
runtime predictions were calculated: 9 days to invert 24-round SHA-1; 94 days to
invert 29-step MD5; 189 days to invert 19-round SHA-256.

Based on these results, the third take away of the proposed approach can be formu-
lated: runtime for an unreachable operation can be predicted by extrapolating runtimes
of previous intermediate problems.

6 Parameterizing Kissat by ParamILS on
intermediate inverse problems

We put forward a hypothesis that simple intermediate inverse problems can be lever-
aged to parameterize Kissat to solve hard intermediate problems faster or just solve
within a time limit if it is not yet so. On the one hand, parameterizing simplifies prob-
lems which are already simple, and it is not guaranteed that it will help solving hard
problems. On the other hand, all corresponding CNFs have a very similar structure.
We decided to test this hypothesis in practice.

6.1 Approach

Consider an algorithm with parameters, which affect the algorithm’s performance.
Parameters’ values can be integer, real, or categorical. Algorithm configuration is the
problem of automatically identifying parameter configuration (a set of parameters’ val-
ues) that optimizes the performance of a given algorithm on a set of instances [34]. An
algorithm to be parameterized is called target algorithm, while an algorithm aimed at
solving an algorithm configuration problem is called algorithm configurator (or con-
figurator for short). A configuration space consists of all possible configurations; a
configurator begins from a start configuration and searches for better configurations
across the configuration space. For each considered configuration, an objective function
is calculated and the goal is to optimize this function. Usually it is needed to mini-
mize an objective function PARX — the average runtime over all instances whereby
unsolved instances count as X times a time limit.

To test the aforementioned hypothesis, the following inputs should be given to a
configurator:

1. training set — a set of SAT instances that encode intermediate inverse problems
between operations i and i+ 1;

2. CDCL solver as a target algorithm to be parameterized;
3. solver’s configuration space;
4. start configuration;
5. objective function;
6. time limit for the solver;

18



7. time limit for the configurator.

6.2 Choosing algorithm configurator

The main configurators for CDCL solvers are ParamILS [35], SMAC [36], and
GGA [37]. They are based on iterated local search, sequential model-based opti-
mization, and genetic algorithms, respectively. These configurators were used in the
Configurable SAT Solver Competition in 2013 and 2014 [38]. During these competi-
tions, each considered parameterized CDCL solver was scored by the best performance
it achieved among all configurators.

A recent implementation of GGA is PyDGGA [39] while that for SMAC is
SMAC3 [40]. We were choosing between ParamILS and SMAC3 for our experi-
ments because they are free software (unlike proprietary PyDGGA). Finally we chose
ParamILS since the current version of SMAC3 does not natively maintain algorithm
configuration.

6.3 Configuration space for Kissat

We decided to parameterize Kissat 4.0.1 that was used in previous sections. There
are 90, 101, and 152 parameters in Kissat 3.0.0, 3.1.1, and 4.0.1, respectively, and all
of them are integer and finite. If a solver is run with the option --range, it prints the
left bound l, the default value d, and the right bound r of all parameters. It is clear
that a domain’s size is n = r− l+ 1. In Kissat’s configuration space, n varies from 2
to 231.

We decided to keep a configuration space as small as possible since the objective
function is costly (i.e., much computational resources are needed to calculate it). First,
we took 88 parameters which present in all three Kissat’s versions since a parameter
that remains in different versions of a solver for years can be considered important. Sec-
ond, we excluded 49 of them from the consideration since in preliminary experiments
they did not affect Kissat’s performance. Some of them alter the output statistics,
while other are redundant. Third, we additionally reduced parameters’ domains man-
ually to have n ≤ 10 in each domain. Note that all left bounds, right bounds, and
default values were not changed. The chosen 39 parameters and their domains are
presented in Appendix B. The corresponding configuration space consists of 3.45e+28
parameter configurations, so it is still not feasible to try them all.

7 Preimage attacks by parameterized Kissat

In this section, the approach proposed in Section 6 is applied to parameterize Kissat
on intermediate inverse problems to invert 24-round SHA-1, 29-step MD5, and 19-
round SHA-256.

7.1 Experimental setup

The algorithm configuration problem was considered as follows:

1. ParamILS 2.3.8 as a configurator;

19



2. a set of SAT instances that encode intermediate inverse problems (specific for each
compression function, see the following subsections) as a training set;

3. Kissat 4.0.1 as a target algorithm;
4. the Kissat’s configuration space described in Subsection 6.3;
5. the default Kissat’s configuration as a start configuration;
6. PAR1000 as an objective function;
7. a time limit for SAT instances (specific for each compression function);
8. a time limit of 72 hours for ParamILS.

A computer equipped with two 96-core CPUs AMD EPYC 9654 and 768 Gb
RAM was used in these experiments. ParamILS 2.3.8 is a single-threaded application.
Besides the aforementioned inputs, it takes a random seed to initialize the random-
ization. On the first training set, ParamILS was run 192 times with the random seed
varied from 0 to 191 to employ all CPU cores. In case of the second training set,
random seed was varied from 192 to 383, then from 384 to 575 for the third set.

In preliminary experiments, it turned out that a training set must contain at least
10 instances to find a new configuration that works better on harder intermediate
inverse problems. In the following subsections, each training set contains 16 instances.

According to the predictions from Section 5, three main considered problems in
ascending order of hardness are: inverting 24-round SHA-1; inverting 29-round MD5;
inverting 19-round SHA-256. That is why below they are solved in this order.

7.2 Inverting 24-step SHA-1

For SHA-1, the first training set consisted of 16 CNFs: the last 15 intermediate inverse
problems between rounds 21-22 and the one for 22 rounds, all for 1-hash. These CNFs
were chosen because the objective function value on this set is reasonable: it is 43
minutes on 1 CPU core with a time limit of 1 day when the default configuration is
applied. For comparison, on the first 16 intermediate inverse problems between rounds
22-23 the objective function value is 1 day 19 hours.

As mentioned above, ParamILS was run 192 times using different random seeds.
A time limit of 33 minutes for Kissat was used since this was sufficient to solve any
instance from the set using the default configuration. Within ParamILS’s time limit
of 3 days, the best result was found on seed 69. In total, 3,085 configurations were
tried on this seed, the best configuration was updated 5 times, and on the final one
the objective function value was 10 minutes, so a 4X speed-up was achieved.

We decided to parameterize Kissat one more time on the second training set
consisted of the first 16 intermediate inverse problems between rounds 22-23. The
best configuration found in the previous experiment was used as a start configuration
in this experiment. The objective function value on the start configuration was 11
hours 17 minutes (compared to 1 day 19 hours on the default configuration). A time
limit for Kissat was set to 2 hours 30 minutes. ParamILS was run 192 times as
earlier. This time seed 279 gave the best result: 321 configurations were tried, the best
configuration was updated once, and the corresponding objective function value was
4 hours 30 minutes. The speed-up was about 2X/10X compared to the start/default

20



configuration. Values of 28 parameters were changed compared to the default one. The
best found configuration is presented in Appendix C.

The parameterized Kissat was run with a time limit of 1 day on 97 CNFs between
rounds 21-24 as it was done for the default Kissat in Subsection 5.2. The results are
presented in Figure 4. The default version solved 69 problems, while the parameterized
one solved 74 problems and on most of them it was faster. More importantly, the
parameterized Kissat solved 9 intermediate inverse problems between rounds 23-24.
In particular, it inverted (23 26

32 )-round SHA-1. In contrast, the default version solved
only 4 intermediate inverse problems, yet at most (23 22

32 )-round SHA-1 was inverted.
Therefore, it is clear that the parameterized version outperforms the default one.
Similarly to Subsection 5.2, we used regression analysis to predict a runtime needed
to invert 24 rounds, see Figure 4. Recall that despite the exponential behavior of
the runtime, the regression is shown as a line since y-axis is in the logarithmic scale.
According to the prediction, it would take the parameterized Kissat 6 days to invert
24-round SHA-1, yet the default version would solve it in 9 days.

21
21

 2
/3

2
21

 4
/3

2
21

 6
/3

2
21

 8
/3

2
21

 1
0/

32
21

 1
2/

32
21

 1
4/

32
21

 1
6/

32
21

 1
8/

32
21

 2
0/

32
21

 2
2/

32
21

 2
4/

32
21

 2
6/

32
21

 2
8/

32
21

 3
0/

32 22
22

 2
/3

2
22

 4
/3

2
22

 6
/3

2
22

 8
/3

2
22

 1
0/

32
22

 1
2/

32
22

 1
4/

32
22

 1
6/

32
22

 1
8/

32
22

 2
0/

32
22

 2
2/

32
22

 2
4/

32
22

 2
6/

32
22

 2
8/

32
22

 3
0/

32 23
23

 2
/3

2
23

 4
/3

2
23

 6
/3

2
23

 8
/3

2
23

 1
0/

32
23

 1
2/

32
23

 1
4/

32
23

 1
6/

32
23

 1
8/

32
23

 2
0/

32
23

 2
2/

32
23

 2
4/

32
23

 2
6/

32
23

 2
8/

32
23

 3
0/

32 24

SHA-1 rounds

1 sec

1 min

1 hour

1 day

10 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction
param-kissat4.0.1 runtime
param-kissat4.0.1 prediction

Fig. 4: Comparison of the default Kissat with its parameterized version on inverse
problems for rounds 21-24 of SHA-1, 1-hash. The y-axis is in the logarithmic scale.

To invert 24-round SHA-1, we chose the Cube-and-Conquer approach — a given
problem is split via a lookahead solver into subproblems, which are solved by a CDCL
solver [41]. A proper splitting is crucial for Cube-and-Conquer. Usually this is managed
by choosing a value of a cutoff threshold that regulates switching from splitting to
forming a subproblem for a CDCL solver.

In particular, we applied a Cube-and-Conquer-based algorithm EnCnC [20]. It
was EnCnC that inverted 1-hash produced by the 43-step MD4 and 28-step MD5
compression functions for the first time [20]. Briefly, the algorithm generates a set of
promising cutoff thresholds and then for each threshold a random sample of subprob-
lems is formed and all of them are solved by a CDCL solver with a time limit. In
the present paper we decided to employ EnCnC in an incomplete SAT solving mode
aimed at SAT instances with a huge number of satisfying assignments. The following
inputs were given to EnCnC:

• lookahead solver March cu [42];

21



• the parameterized Kissat;
• nstep = 1;
• minc = 5000;
• maxc = 1000000;
• minr = 10;
• N = 1000;
• maxst = 5000 seconds;
• cores = 192;
• mode = incomplete-solving.

The time limit 5,000 seconds (1 hour 23 minutes) for instances from samples is
standard for SAT Competitions [43], so a state-of-the-art CDCL solver is designed to
do its best within it. The remaining values of EnCnC’s inputs were chosen to form at
least 23 cutoff thresholds. The reason is that at most 23,224 instances can be solved
with a time limit 5,000 seconds within a week on 192 CPU cores, yet we could not
afford spending more resources on a single computational task.

A preimage for 24-round SHA-1 was found by EnCnC in 3 hours 53 minutes. The
parameterized Kissat was interrupted on 384 instances because of the time limit and
solved one instance in 59 minutes. Table 2 presents the found preimage, where the
first row contains values of M [0],M [1],M [2],M [3], the second row contains that of
M [4],M [5],M [6],M [7] and so on.

Table 2: A preimage of 160 one-bits produced by
24-round SHA-1 compression function.

0xd90b5a14 0x9bbec456 0x72f7a3db 0xddf48dd0

0xf869acc6 0x77dc416c 0x3bf8499c 0x5ecfd3a6

0x740f6a1f 0xa1d597b 0x9f794868 0x14c40240

0xa1ec0639 0x5ea901b7 0xc6e4df8c 0xe8a841de

EnCnC was also run with the default Kissat as a CDCL solver and as a result a
preimage was found in 8 hours 30 minutes. It means that the parameterized Kissat
outperforms the default one on SHA-1-based subproblems generated by Cube-and-
Conquer.

Since 24-round SHA-1 was inverted in a reasonable time, we also attempted solving
three intermediate inverse problems for (24 2

32 )-round, (24
4
32 )-round, and (24 6

32 )-
round SHA-1. For convenience, they are further called 24.0625-round, 24.125-round,
and 24.1875-round SHA-1, respectively. EnCnC with the same parameterized Kissat
was used for this purpose. To have at least 23 thresholds, maxc was increased to
5,000,000 for the first two problems, while for the third problem minc=20,000 and
maxc=20,000,000 were used. As a result, preimages for 24.0625-round and 24.125-round
SHA-1 were found in 1 day 20 hours and 1 day 4 hours. At the same time, no preimage
for 24.1875-round SHA-1 was found within 7 days. Table 3 presents the preimage
found for 24.125-round SHA-1.

22



Table 3: A preimage of 160 one-bits produced by
24.125-round SHA-1 compression function.

0xbc8bc542 0x6dc777da 0x5117e5b 0x90da0f3

0x1e4a35ca 0x2b5b1a80 0x6ad1d5d3 0x6cccfab

0x1cf68d15 0x2f409cf 0xff53d0ba 0x3bebeb5e

0xb1785cdd 0x30b21e0e 0x53425e6c 0x128b1a94

7.3 Inverting 29-step MD5

We applied ParamILS to MD5 two times. The first training set consisted of the
last 15 intermediate inverse problems between steps 27-28 and the one for 28 steps.
On the default configuration, the objective function value was 6 hours 11 minutes.
In a ParamILS scenario, a time limit of 1 hour 23 minutes was set for Kissat.
Within 3 days on 192 CPU cores, the best result was found on seed 63. In total, 786
configurations were tried on this seed, the best configuration was updated 3 times, and
on the final one the objective function value was 1 hour 24 minutes, so a 4X speed-up
was achieved.

The second training set consisted of the last ten intermediate inverse problems
between steps 27-28, 28 steps, and the first five problems between steps 28-29. The
best configuration found in the previous experiment was used as a start configuration
in this experiment. The objective function value on the start configuration was 11
hours 57 minutes (compared to 37 hours 16 minutes on the default configuration). A
time limit for Kissat was set to 2 hours 47 minutes. ParamILS was run 192 times
as earlier. This time seed 347 gave the best result: 230 configurations were tried on
the seed, the best configuration was updated two times, and the final best objective
function value was 3 hours 44 minutes. The speed-up was about 3X/10X compared
to the start/default configuration. Values of 28 parameters were changed compared to
the default one. The best found configuration is presented in Appendix C.

The parameterized Kissat was run with the time limit of 1 day on 67 instances
between steps 27-29 of MD5 as it was done for the default Kissat in Subsection 5.2.
The results are presented in Figure 5. The default version solved 43 problems, while
the parameterized one solved 46 problems. Note that the parameterized Kissat solved
13 intermediate inverse problems between steps 28-29 while the default version solved
only 10 of them. Similarly to Subsection 5.2, we used regression analysis to predict
a runtime needed to invert 29 steps. According to the prediction, it would take the
parameterized Kissat 18 days, yet the default version would solve it in 94 days.

EnCnC was run on 29-step MD5 with the following inputs: minr=1,000;
minc=10,000; maxc=500,000; Kissat, parameterized on MD5. The remaining inputs
are the same as were presented in the previous subsection. As a result, a preimage was
found in 4 days 17 hours. This preimage is presented in Table 4. EnCnC was also run
using the default Kissat, yet no preimage was found within 7 days.

23



27
27

 2
/3

2
27

 4
/3

2
27

 6
/3

2
27

 8
/3

2
27

 1
0/

32
27

 1
2/

32
27

 1
4/

32
27

 1
6/

32
27

 1
8/

32
27

 2
0/

32
27

 2
2/

32
27

 2
4/

32
27

 2
6/

32
27

 2
8/

32
27

 3
0/

32 28
28

 2
/3

2
28

 4
/3

2
28

 6
/3

2
28

 8
/3

2
28

 1
0/

32
28

 1
2/

32
28

 1
4/

32
28

 1
6/

32
28

 1
8/

32
28

 2
0/

32
28

 2
2/

32
28

 2
4/

32
28

 2
6/

32
28

 2
8/

32
28

 3
0/

32 29

MD5 steps

1 sec

1 min

1 hour

1 day

100 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction
param-kissat4.0.1 runtime
param-kissat4.0.1 prediction

Fig. 5: Comparison of the default Kissat with its parameterized version on interme-
diate inverse problems for steps 27-29 of MD5, 1-hash. The y-axis is in the logarithmic
scale.

Table 4: A preimage of 128 one-bits produced by
29-step MD5 compression function.

0xca1ed26c 0x53005d49 0xeca03c53 0xa3d7ba2e

0xe6068fea 0x60367546 0xdda0dc31 0x2f8a23ec

0x9201cdb9 0x6e805f20 0xde276453 0xd40c08e8

0x4691e663 0x63f8a4cc 0x8f2807fb 0xfa40d5d

7.4 Inverting 19-round SHA-256

According to the prediction from Subsection 5.2, inverting 19-round SHA-256 is the
hardest considered computational problem, so three ParamILS-related experiments
were conducted on 192 CPU cores. The results are presented in Table 5. In the first
column, numbers of intermediate inverse problems between rounds 18-19 are specified,
all for 1-hash.

Table 5: ParamILS results obtained on intermediate inverse problems between
rounds 18-19 of SHA-256.

Training set Kissat time limit Best seed value / configurations Best function value
Problems 1-16 5 h 19 min 118 / 3,967 2 min 12 sec
Problems 3-18 1 h 27 min 229 / 4,267 6 min
Problems 4-19 3 h 3 min 499 / 3,970 37 min

The first configuration from the table provides a 32X speed-up on the first training
set when compared to the default configuration. As for the other two configurations, a
speed-up is hard to calculate directly since on the default configuration intermediate
inverse problems with j = 17, 19 were not solved within the time limits. Consider
only problems which were solved on the default configuration. Then a 13X speed-up

24



on the second training set was achieved since on the default/second configuration the
objective function value was 1 h 10 min / 6 minutes 29 seconds. As for the third
configuration from the table, the speed-up was about 3X since the objective function
value on the default/third configuration was 1 h 10 min / 25 minutes. The third
configuration is presented in Appendix C. Compared to the default configuration,
values of 31 parameters out of 39 were changed.

The parameterized Kissat was run with a time limit of 1 day on 33 problems
between rounds 18-19. The results are presented in Figure 6. The default version
solved 17 problems, while the parameterized one solved 22 of them. We used regression
analysis to predict a runtime needed to invert 19 rounds. According to the prediction,
it would take the parameterized Kissat 19 days, yet the default version would solve
it in 189 days.

18

18
 2

/3
2

18
 4

/3
2

18
 6

/3
2

18
 8

/3
2

18
 1

0/
32

18
 1

2/
32

18
 1

4/
32

18
 1

6/
32

18
 1

8/
32

18
 2

0/
32

18
 2

2/
32

18
 2

4/
32

18
 2

6/
32

18
 2

8/
32

18
 3

0/
32 19

SHA-256 rounds

1 sec

1 min

1 hour

1 day

200 days

CP
U 

tim
e

kissat4.0.1 runtime
kissat4.0.1 prediction
param-kissat4.0.1 runtime
param-kissat4.0.1 prediction

Fig. 6: Comparison of the default Kissat with its parameterized version on inter-
mediate inverse problems for rounds 18-19 of SHA-256, 1-hash. The y-axis is in the
logarithmic scale.

EnCnC was run on 19-round SHA-256 with the following inputs: minr=100;
minc=10,000; maxc=1,000,000; the parameterized Kissat (using the third configura-
tion). No preimage was found within 7 days on 192 CPU cores. Then we considered
three intermediate inverse problems for j = 20, 24, 28 that were solved by neither the
default nor the parameterized Kissat. EnCnC’s inputs for j = 20, 24 were minr=100,
minc=10,000, maxc=100,000, while for j = 28 minc and maxc were increased to 50,000
and 500,000, respectively. The results are presented in Table 6. EnCnC with the
default Kissat could not solve the problem for j = 28, while EnCnC with the param-
eterized Kissat solved all three problems. It is clear that the parameterized version
significantly outperformed the default one on these problems.

Then EnCnC with the parameterized Kissat was run on j = 29 with the same
inputs as for j = 28. This problem was successfully solved as well (see the runtime in
the table). It turned out, that the found preimage of (18 29

32 )-round SHA-256 is also
a preimage of 19-round SHA-256. Subsection 3.1 mentioned that there is a nonzero
probability that this could happen. In this case the probability was 1

8 . Note that in case

25



of j = 20, 24, 28 the probability was 1
4096 ,

1
256 , and

1
16 , and no preimage for 19-round

SHA-256 was found.
Table 7 presents the found preimage of 19-round SHA-256. EnCnC with the

default Kissat was also run on j = 29, but no preimage was found within 7 days.

Table 6: EnCnC runtimes on SHA-256 intermediate inverse problems between
rounds 18 and 19. The value “-” means that nothing was found within 7 days.

Conquer solver j = 20 j = 24 j = 28 j = 29 j = 32
Default Kissat 1 h 38 min 61 h 45 min 67 h 32 min - -
Parameterized Kissat 8 min 4 h 16 min 7 h 13 min 18 h 33 min -

Table 7: A preimage of 256 one-bits produced by
19-round SHA-256 compression function.

0x61ef77ad 0xf404a654 0x32332d66 0x979944c3

0xb0a84a7c 0x9ed99956 0x76979691 0x9d4f3e47

0x325cd2e1 0x81739d58 0xb3c87ef0 0x2f6f2587

0x6a7be4d4 0xb4dd5faf 0xc5c05d37 0xa00c6b8f

We also tried to invert 29-step MD5, 24-round SHA-1, and 19-round SHA-256 on
the same computer by off-the-shelf parallel SAT solvers: seven solvers from the SAT
Competition 2024 and ALIAS solver [44]. The last one was chosen because it has
shown promising results on cryptographic problems. None of three mentioned inverse
problems was solved by these solvers.

8 Discussion

According to the results, the hypothesis proposed in Section 6 is experimentally con-
firmed, and it gives the fourth take away: parameterizing a state-of-the-art CDCL
solver’s parameters on simple intermediate inverse problems allows faster solving of
hard intermediate inverse problems.

Three found configurations for MD5, SHA-1, and SHA-256 differ a lot, but the fol-
lowing values exist in all of them: stable=2, tier1=5. Note that the default Kissat’s
values are different.

According to the results, it is realistic to invert 25-round SHA-1 compression func-
tion by allocating more computational resources for both parameterizing and solving.
On the other hand, it is likely that additional effective algorithmic techniques are
required to invert 30-step MD5 and 20-round SHA-256 compression functions.

8.1 Real runtime vs predicted runtime

Since preimages of 24-round SHA-1, 29-step MD5, and 19-round SHA-256 compression
functions were found, the corresponding predicted runtimes can be validated. Recall

26



that predicted runtimes for the default Kissat were calculated in Subsection 5.2 (see
Figure 3), while that of the parameterizedKissat was done in Section 7 (see Figures 4,
5, 6).

As predicted, the default Kissat would find a preimage for 24-round SHA-1 in 9
days on 1 CPU core. Then in Subsection 7.2 EnCnC based on the default Kissat
did it in 8 hours 30 minutes on 192 CPU cores. If 1 CPU core had been used, then
EnCnC would have done it in 68 days. It means that the real runtime turned out to
be about 6.8X higher that the predicted runtime. Details on the remaining cases are
presented in Table 8.

Table 8: Comparison of predicted runtimes with real runtimes.

Problem Kissat Predicted, 1 core Real, 192 cores Real, 1 core Ratio

24-round SHA-1
default 9 d 8 h 30 min 68 d 6.8X
param. 6 d 3 h 53 min 31 d 5.2X

29-step MD5 param. 18 d 4 d 17 h 904 d 50.2X
19-round SHA-256 param. 19 d 18 h 33 min 148 d 7.8X

According to the table, the real runtimes in case of SHA-1 and SHA-256 are 5-8X
higher that the predicted runtimes, while MD5’s real time is 50X higher. On the one
hand, the predictions are overly optimistic. On the other hand, even in the present
form these predicted runtimes can be considered as lower bounds that can be useful to
allocate required computational resources. Also, such predictions can help comparing
encodings, solvers, and parameter configurations.

8.2 Second preimage attacks

The found preimages differ from those published in [9], so in the present paper for
the first time second preimage attacks (see Subsection 2.2) on 29-step MD5 and 24-
round SHA-1 compression functions are performed in addition to the corresponding
preimage attacks.

8.3 Reproducibility

The presented preimages were hard to find, but their verification via direct computa-
tions takes a fraction of a second. The correctness was verified by modifying reference
implementations from [16, 21, 24] written in C. First, padding (see Section 2), as
well as all unnecessary operations (steps, rounds) in a compression function must be
deleted. Note that the incrementation stage, which is performed after all remaining
operations, is not deleted. Then a preimage should be given as an input of the modi-
fied compression function. As a result, 128 one-bits, 160 one-bits, and 256 one-bits are
produced for MD5, SHA-1, and SHA-256, respectively.

27



8.4 Comparison with other methods

As mentioned in Section 2, theoretical preimage attacks on 64-round (full) MD5 cryp-
tographic hash function, 56-round (reduced) SHA-1 cryptographic hash function, and
52-round (reduced) SHA-256 compression function exist [23, 25, 45]. It means that
these papers proposed theoretical algorithms for preimage attacks with lower complex-
ity than brute force. It seems that it is in principle possible to modify these algorithms
to mount practical attacks on the reduced versions of compression functions, for which
record results were obtained in the present paper. However, such modifications were
not made in the course of the present research since they are highly nontrivial.

Consider computational resources required to mount preimage attacks in the
previous sections.

Table 9: Computational resources required to mount
preimage attacks in the present paper.

MD5
27 steps 28 steps 29 steps
4 sec, 1 core 32 min, 1 core 4 d 17 h, 192 cores

SHA-1
22 rounds 23 rounds 24 rounds
40 min, 1 core 14 h 39 min, 1 core 3 h 53 min, 192 cores

SHA-256
17 rounds 18 rounds 19 rounds
1 sec, 1 core 25 sec, 1 core 18 h 33 min, 192 cores

As shown in the table, the computational costs increase sharply on the last con-
sidered operation (round or step). If the cost increases that sharply for all following
operations, then the SAT approach will require more resources than brute force to
mount preimage attacks on the aforementioned versions, for which theoretical attacks
were held. It is another argument in favor of mounting practical attacks based on those
theoretical algorithms.

9 Related work

SAT has been applied to cryptographic hash functions of the MD family as follows.
In [46], practical collision attacks on MD4 and MD5 were performed. In [1], 39-step
MD4 was inverted, while for steps 40-43 it was done in [47]. 28-step MD5 was inverted
in [2, 20].

SAT has been also applied to the SHA family. 22-round SHA-1 was inverted in [3, 6],
then for the 23-round version it was done in [2, 27]. In [7], a weakened 24-round SHA-
1 was inverted, such that the number of known hash bits was reduced from 160 to
128. In [6], full SHA-1 was inverted, but most message bits were assigned randomly,
yet in [8] a similar result was achieved for SHA-256. In [4], 16-round SHA-256 and
2-round SHA-3 were inverted. A semi-free-start collision for 38-round SHA-256 was

28



found in [48]. The first collision for full SHA-1 was found in [22] and partially it was
done by a SAT solver.

The following hard mathematical problems have been solved via Cube-and-
Conquer in the past decade: the Boolean Pythagorean Triples problem [49], the
Schur number five problem [50], Lam’s problem [51], Keller’s Conjecture [52]. Cube-
and-Conquer is also applicable to physics: the lower bound for the Minimum
Kochen–Specker Problem was improved in [53].

In the present paper, a costly black-box objective function is minimized to solve
hard cryptanalysis problems by a parallel SAT solver. Similar objective functions were
minimized in [54, 55] with the same goal.

10 Conclusion

This paper proposed a new type of intermediate inverse problems between any two
consecutive operations i and i+1 of a cryptographic hash function from a wide class.
First, these problems are useful to make some progress if i operations can be inverted
in a reasonable time while the inversion of i + 1 steps is infeasible. Second, simple
intermediate problems can be used to parameterize a CDCL solver in a way it can
solve previously unattainable problems. Third, if some intermediate inverse problems
are solved between operations i and i+1, a runtime prediction for inverting i+1 steps
can be calculated. Fourth, in some cases it is not even needed to invert i+1 operations
directly since a solution of an intermediate inverse problem between operations i and
i + 1 can be simultaneously a preimage of i + 1 operations. The main result of the
paper is inverting 29-step MD5, 24-round (and 24.125-round) SHA-1, and 19-round
SHA-256 compression functions for the first time, thus making a clear progress in this
area. In the future we are going to apply the proposed approach to analyze other
cryptographic hash functions.

Acknowledgements. The author thanks anonymous reviewers for valuable and
thorough comments. The author also thanks Stepan Kochemazov for fruitful discus-
sions. The author is grateful to the Irkutsk Supercomputer Center of SB RAS for
providing computational resources.

Author contribution. The author confirms the sole responsibility for the concep-
tion of the study, presented results and manuscript preparation.

Funding. This work was funded by the Ministry of Science and Higher Education
of the Russian Federation, project No. 121041300065-9.

Data availability. All CNFs used in our experiments are available online at https:
//github.com/olegzaikin/sha1-sat.

Code availability. Programs for generating CNFs are available online at https:
//github.com/olegzaikin/sha1-sat and https://github.com/olegzaikin/SAT-encoding.
Scripts for producing configuration spaces for Kissat are available online at https:
//github.com/olegzaikin/paramsat.

Materials availability. Not applicable.

29

https://github.com/olegzaikin/sha1-sat
https://github.com/olegzaikin/sha1-sat
https://github.com/olegzaikin/sha1-sat
https://github.com/olegzaikin/sha1-sat
https://github.com/olegzaikin/SAT-encoding
https://github.com/olegzaikin/paramsat
https://github.com/olegzaikin/paramsat


Declarations

Conflict of interest. The author has no competing interests or conflicts to declare.

Ethics approval. Not applicable.

Consent to participate. Not applicable.

Consent for publication. Not applicable.

A Random outputs

Table 10 contains 8 random sequences which were used as outputs to generate SAT
instances.

Table 10: Eight random 256-bit sequences in the hexadecimal form.

0xdf929bb8b4136b686067d625801408a392e0d3f2a7b88ecacf4380666a43bcc7
0xa4ea4f9eb6409eaa89c0e5f8e5c059c5e1df8669b90acd63b186649dd2c40617
0x1f8a2388ee6ddc4d9b5656b27b870e3f0ef7b471464f751f92117bec28aa7c49
0xfc9de05627af825351b8c821a78eae2da94099b7730405396afbadcb7291fe15
0x983efa3a4c5517f55edb1856cc2517d09548fc84b2bf3512f31a4c0b193a2102
0xe536d6eac5d9d6cbb744e403db6fe028778172ad5f2a76501b8739b2f3bfb533
0xdd3a5442090eabc9152dbabad73c456caaa604f3f83498e4e16dd1bc84ee4b54
0x485b34e25b358b8bbd8c459f9091052d80fe02a7cbeff29f98430bd0d4a2397e

B Varied Kissat parameters and their Domains

Table 11 contains 39 chosen Kissat 4.0.1 parameters, their domains, and default
values. Domains of all parameters but backbone, shrink, stable, and target were
constructed manually.

C Found configurations

This section contains the final best configurations found for SHA-1, MD5, and SHA-
256. The configurations are presented by listing values of all 39 parameters specified
in Table 11.

SHA-1: 1, 2147483647, 2147483647, 10000000, 2147483647, 1, 25, 25, 0, 16,
10000000, 2000, 1, 10000, 100000, 10, 1000, 100000000, 8192, 1073741824, 1000, 10, 3,
2, 1, 25, 1000, 2147483647, 2147483647, 1000, 100000, 32768, 3, 2147483647, 2, 5, 3,
10, 0.

MD5: 1, 1, 1000, 10000000, 2147483647, 5, 25, 50, 1024, 0, 100000, 2147483647, 16,
1000, 100000, 10, 1000, 10, 1024, 1024, 1, 25, 3, 2, 100, 50, 1000, 1000, 2147483647,
100000, 0, 10, 3, 2147483647, 1, 5, 3, 6, 50.

SHA-256: 2, 100000, 10000000, 10, 100, 10, 1, 2, 2147483647, 1024, 10000000,
1048576, 2, 10000, 1000000, 0, 10000, 100000000, 128, 1024, 1, 5, 0, 2, 1, 2, 1,
2147483647, 0, 0, 2147483647, 10000000, 10000000, 10000000, 2, 5, 1000, 3, 0.

30



Table 11: Chosen parameters, domains, and default values.

Parameter Domain Default value
backbone 0, 1, 2 1
backbonerounds 1, 100, 100000, 10000000, 2147483647 100
bumpreasonslimit 1, 10, 1000, 100000, 10000000, 2147483647 10
bumpreasonsrate 1, 10, 1000, 100000, 10000000, 2147483647 10
chronolevels 0, 100, 100000, 10000000, 2147483647 100
compactlim 0, 1, 2, 5, 10, 25, 50, 100 10
decay 1, 2, 5, 10, 25, 50, 100, 200 50
definitioncores 1, 2, 5, 10, 25, 50, 100 2
definitionticks 0, 1024, 1000000, 2147483647 1000000
eliminatebound 0, 2, 16, 128, 1024, 8192 16
eliminateclslim 1, 100, 100000, 10000000, 2147483647 100
eliminateocclim 0, 2000, 1048576, 2147483647 2000
eliminaterounds 1, 2, 16, 128, 1024, 10000 2
emafast 10, 33, 100, 1000, 10000, 100000, 1000000 33
emaslow 100, 1000, 10000, 100000, 1000000 100000
mineffort 0, 10, 1000, 100000, 10000000, 2147483647 10
minimizedepth 1, 10, 100, 1000, 10000, 100000, 1000000 1000
modeinit 10, 1000, 100000, 10000000, 100000000 1000
reluctantint 2, 16, 128, 1024, 8192, 32768 1024
reluctantlim 0, 1024, 1048576, 1073741824 1048576
restartint 1, 10, 100, 1000, 10000 1
restartmargin 0, 1, 2, 5, 10, 25 10
shrink 0, 1, 2, 3 3
stable 0, 1, 2 1
substituteeffort 1, 10, 100, 1000 10
substituterounds 1, 2, 5, 10, 25, 50, 100 2
subsumeclslim 1, 1000, 1048576, 2147483647 1000
subsumeocclim 0, 1000, 1048576, 2147483647 1000
sweepclauses 0, 1024, 1048576, 2147483647 1024
sweepdepth 0, 2, 1000, 100000, 10000000, 2147483647 2
sweepfliprounds 0, 1, 1000, 100000, 10000000, 2147483647 1
sweepmaxclauses 2, 10, 1000, 32768, 10000000, 2147483647 32768
sweepmaxdepth 1, 3, 1000, 100000, 10000000, 2147483647 3
sweepvars 0, 256, 100000, 10000000, 2147483647 256
target 0, 1, 2 1
tier1 1, 2, 5, 10, 25, 50, 100 2
tier2 1, 3, 6, 10, 25, 50, 100, 200, 500, 1000 6
vivifytier1 0, 1, 3, 6, 10, 25, 50, 100 3
vivifytier2 0, 1, 3, 6, 10, 25, 50, 100 3

References

[1] De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure
hash functions using SAT solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.)
Theory and Applications of Satisfiability Testing - SAT 2007, 10th International
Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings. Lecture Notes in
Computer Science, vol. 4501, pp. 377–382. Springer, Cham (2007). https://doi.
org/10.1007/978-3-540-72788-0 36

31

https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/10.1007/978-3-540-72788-0_36


[2] Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a SAT prob-
lem. In: IEEE 24th International Conference on Tools with Artificial Intelligence,
ICTAI 2012, Athens, Greece, November 7-9, 2012, pp. 916–921. IEEE Computer
Society, USA (2012). https://doi.org/10.1109/ICTAI.2012.128

[3] Srebrny, M., Srebrny, M., Stepien, L.: SAT as a programming environment for
linear algebra and cryptanalysis. In: International Symposium on Artificial Intel-
ligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA, January
2-4, 2008 (2008)

[4] Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security margin
evaluation of SHA-3 contest finalists through SAT-based attacks. In: Cortesi, A.,
Chaki, N., Saeed, K., Wierzchon, S.T. (eds.) Computer Information Systems and
Industrial Management - 11th IFIP TC 8 International Conference, CISIM 2012,
Venice, Italy, September 26-28, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7564, pp. 56–67. Springer, Cham (2012). https://doi.org/10.1007/
978-3-642-33260-9 4

[5] Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional
Satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999) https://doi.org/10.
1109/12.769433

[6] Nossum, V.: SAT-based preimage attacks on SHA-1. Master’s thesis, University
of Oslo, Department of Informatics (2012)

[7] Bellini, E., Piccoli, A.D., Makarim, R.H., Polese, S., Riva, L., Visconti, A.: New
records of pre-image search of reduced SHA-1 using SAT solvers. In: Giri, D.,
Choo, K.R., Ponnusamy, S., Meng, W., Akleylek, S., Maity, S.P. (eds.) Proceed-
ings of the Seventh International Conference on Mathematics and Computing
- ICMC 2021, Shibpur, India. Advances in Intelligent Systems and Comput-
ing, vol. 1412, pp. 141–151. Springer, Cham (2021). https://doi.org/10.1007/
978-981-16-6890-6 11

[8] Choo, D., Soos, M., Chai, K.M.A., Meel, K.S.: Bosphorus: Bridging ANF and
CNF solvers. In: Teich, J., Fummi, F. (eds.) Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, pp.
468–473. IEEE, USA (2019). https://doi.org/10.23919/DATE.2019.8715061

[9] Zaikin, O.: Inverting step-reduced SHA-1 and MD5 by parameterized SAT solvers.
In: Shaw, P. (ed.) 30th International Conference on Principles and Practice of
Constraint Programming, CP 2024, September 2-6, 2024, Girona, Spain. LIPIcs,
vol. 307, pp. 31–13119. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (2024). https://doi.org/10.4230/LIPICS.CP.2024.31

[10] Biere, A., Heule, M., Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability -
Second Edition. Frontiers in Artificial Intelligence and Applications, vol. 336. IOS
Press, Amsterdam (2021). https://doi.org/10.3233/FAIA336

32

https://doi.org/10.1109/ICTAI.2012.128
https://doi.org/10.1007/978-3-642-33260-9_4
https://doi.org/10.1007/978-3-642-33260-9_4
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-981-16-6890-6_11
https://doi.org/10.1007/978-981-16-6890-6_11
https://doi.org/10.23919/DATE.2019.8715061
https://doi.org/10.4230/LIPICS.CP.2024.31
https://doi.org/10.3233/FAIA336


[11] Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Sympo-
sium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pp.
151–158 (1971). https://doi.org/10.1145/800157.805047

[12] Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom.
Reasoning 24(1/2), 165–203 (2000) https://doi.org/10.1023/A:1006326723002

[13] Menezes, A., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, USA (1996). https://doi.org/10.1201/9781439821916

[14] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology - CRYPTO’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings. Lecture Notes
in Computer Science, vol. 435, pp. 218–238. Springer, Cham (1989). https:
//doi.org/10.1007/0-387-34805-0 21

[15] Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.)
Advances in Cryptology - CRYPTO’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings.
Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer, Cham (1989).
https://doi.org/10.1007/0-387-34805-0 39

[16] Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321, 1–21 (1992) https:
//doi.org/10.17487/RFC1321

[17] Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone,
S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings. Lecture Notes in Computer Science, vol. 537, pp. 303–311. Springer,
Cham (1990). https://doi.org/10.1007/3-540-38424-3 22

[18] Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings. Lecture Notes in Computer Science, vol.
3494, pp. 19–35. Springer, Cham (2005). https://doi.org/10.1007/11426639 2

[19] Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings. Lecture Notes in
Computer Science, vol. 5479, pp. 134–152. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01001-9 8

[20] Zaikin, O.: Inverting cryptographic hash functions via Cube-and-Conquer. J.
Artif. Intell. Res. 81, 359–399 (2024) https://doi.org/10.1613/JAIR.1.15244

33

https://doi.org/10.1145/800157.805047
https://doi.org/10.1023/A:1006326723002
https://doi.org/10.1201/9781439821916
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321
https://doi.org/10.1007/3-540-38424-3_22
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1613/JAIR.1.15244


[21] Eastlake, D.E., Jones, P.E.: US secure hash algorithm 1 (SHA1). RFC 3174, 1–22
(2001) https://doi.org/10.17487/RFC3174

[22] Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first
collision for full SHA-1. In: Katz, J., Shacham, H. (eds.) Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 10401, pp. 570–596. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 19

[23] Espitau, T., Fouque, P., Karpman, P.: Higher-order differential meet-in-the-
middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw,
M. (eds.) Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 9215, pp. 683–701. Springer, Cham
(2015). https://doi.org/10.1007/978-3-662-47989-6 33

[24] U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard (SHS). Federal Information Processing Standards Pub-
lication 180-3 (2008). http://csrc.nist.gov/publications/fips/fips180-3/fips180-3
final.pdf

[25] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) Fast Software Encryp-
tion - 19th International Workshop, FSE 2012, Washington, DC, USA, March
19-21, 2012. Revised Selected Papers. Lecture Notes in Computer Science, vol.
7549, pp. 244–263. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34047-5 15

[26] Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced Keccak
hash functions. Inf. Process. Lett. 113(10-11), 392–397 (2013) https://doi.org/
10.1016/J.IPL.2013.03.004

[27] Nejati, S., Liang, J.H., Gebotys, C.H., Czarnecki, K., Ganesh, V.: Adaptive restart
and CEGAR-based solver for inverting cryptographic hash functions. In: Paske-
vich, A., Wies, T. (eds.) Verified Software. Theories, Tools, and Experiments - 9th
International Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 10712, pp.
120–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 8

[28] Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis. The Kluwer International
Series in Engineering and Computer Science, vol. 2. Springer, New York (1984).
https://doi.org/10.1007/978-1-4613-2821-6

[29] Nejati, S., Ganesh, V.: CDCL(Crypto) SAT solvers for cryptanalysis. In: Pakfe-
trat, T., Jourdan, G., Kontogiannis, K., Enenkel, R.F. (eds.) Proceedings of the

34

https://doi.org/10.17487/RFC3174
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-662-47989-6_33
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1016/J.IPL.2013.03.004
https://doi.org/10.1016/J.IPL.2013.03.004
https://doi.org/10.1007/978-3-319-72308-2_8
https://doi.org/10.1007/978-1-4613-2821-6


29th Annual International Conference on Computer Science and Software Engi-
neering, CASCON 2019, Markham, Ontario, Canada, November 4-6, 2019, pp.
311–316 (2019). https://doi.org/10.5555/3370272.3370307

[30] Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov,
S.: Encoding cryptographic functions to SAT using TRANSALG system. In:
Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F.,
Harmelen, F. (eds.) ECAI 2016 - 22nd European Conference on Artificial Intel-
ligence, 29 August-2 September 2016, The Hague, The Netherlands - Including
Prestigious Applications of Artificial Intelligence (PAIS 2016). Frontiers in Artifi-
cial Intelligence and Applications, vol. 285, pp. 1594–1595. IOS Press, Amsterdam
(2016). https://doi.org/10.3233/978-1-61499-672-9-1594

[31] Semenov, A., Otpuschennikov, I., Gribanova, I., Zaikin, O., Kochemazov, S.:
Translation of algorithmic descriptions of discrete functions to SAT with appli-
cations to cryptanalysis problems. Log. Methods Comput. Sci. 16(1) (2020)
https://doi.org/10.23638/LMCS-16(1:29)2020

[32] Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: CaDiCaL,
Gimsatul, IsaSAT and Kissat entering the SAT Competition 2024. In: Heule, M.,
Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2024
– Solver, Benchmark and Proof Checker Descriptions. Department of Computer
Science Report Series B, vol. B-2024-1, pp. 8–10 (2024)

[33] Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists
(2. Ed.). Academic Press, USA (2000)

[34] Hoos, H.H., Hutter, F., Leyton-Brown, K.: In: Biere, A., Heule, M., Maaren,
H., Walsh, T. (eds.) Automated Configuration and Selection of SAT Solvers.
Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 481–507. IOS
Press, Amsterdam (2021). https://doi.org/10.3233/FAIA200995

[35] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009) https:
//doi.org/10.1613/JAIR.2861

[36] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelli-
gent Optimization - 5th International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers. Lecture Notes in Computer Science, vol. 6683, pp.
507–523. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-25566-3 40

[37] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) Principles and
Practice of Constraint Programming - CP 2009, 15th International Conference,
CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings. Lecture Notes
in Computer Science, vol. 5732, pp. 142–157. Springer, Cham (2009). https://doi.

35

https://doi.org/10.5555/3370272.3370307
https://doi.org/10.3233/978-1-61499-672-9-1594
https://doi.org/10.23638/LMCS-16(1:29)2020
https://doi.org/10.3233/FAIA200995
https://doi.org/10.1613/JAIR.2861
https://doi.org/10.1613/JAIR.2861
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14


org/10.1007/978-3-642-04244-7 14

[38] Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25 (2017)
https://doi.org/10.1016/J.ARTINT.2016.09.006

[39] Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Pydgga: Distributed GGA
for automatic configuration. In: Li, C., Manyà, F. (eds.) Theory and Appli-
cations of Satisfiability Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12831, pp. 11–20. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3 2

[40] Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Ben-
jamins, C., Ruhkopf, T., Sass, R., Hutter, F.: SMAC3: A versatile bayesian
optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23,
54–1549 (2022)

[41] Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
Hardware and Software: Verification and Testing - 7th International Haifa Verifi-
cation Conference, HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 7261, pp. 50–65. Springer, Cham
(2011). https://doi.org/10.1007/978-3-642-34188-5 8

[42] Heule, M., Maaren, H.: March dl: Adding adaptive heuristics and a new branching
strategy. J. Satisf. Boolean Model. Comput. 2(1-4), 47–59 (2006) https://doi.org/
10.3233/SAT190016

[43] Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition
2020. Artif. Intell. 301, 103572 (2021) https://doi.org/10.1016/J.ARTINT.2021.
103572

[44] Kochemazov, S., Zaikin, O.: ALIAS: A modular tool for finding backdoors for
SAT. In: Theory and Applications of Satisfiability Testing – SAT 2018: 21st Inter-
national Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings, pp. 419–427. Springer,
Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-319-94144-8 25

[45] Sasaki, Y., Komatsubara, W., Sakai, Y., Wang, L., Iwamoto, M., Sakiyama, K.,
Ohta, K.: Meet-in-the-middle preimage attacks revisited - new results on MD5
and HAVAL. In: Samarati, P. (ed.) SECRYPT 2013 - Proceedings of the 10th
International Conference on Security and Cryptography, Reykjav́ık, Iceland, 29-31
July, 2013, pp. 111–122 (2013)

[46] Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability

36

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1016/J.ARTINT.2016.09.006
https://doi.org/10.1007/978-3-030-80223-3_2
https://doi.org/10.1007/978-3-030-80223-3_2
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.3233/SAT190016
https://doi.org/10.3233/SAT190016
https://doi.org/10.1016/J.ARTINT.2021.103572
https://doi.org/10.1016/J.ARTINT.2021.103572
https://doi.org/10.1007/978-3-319-94144-8_25


Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-
15, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4121, pp. 102–115.
Springer, Cham (2006). https://doi.org/10.1007/11814948 13

[47] Zaikin, O.: Inverting 43-step MD4 via Cube-and-Conquer. In: Raedt, L.D. (ed.)
Proceedings of the Thirty-First International Joint Conference on Artificial Intel-
ligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 1894–1900 (2022).
https://doi.org/10.24963/IJCAI.2022/263

[48] Alamgir, N., Nejati, S., Bright, C.: SHA-256 collision attack with programmatic
SAT. In: Brown, C.W., Kaufmann, D., Nalon, C., Steen, A., Suda, M. (eds.) Joint
Proceedings of the 9th Workshop on Practical Aspects of Automated Reasoning
(PAAR) and the 9th Satisfiability Checking and Symbolic Computation Work-
shop (SC-Square), 2024 Co-located with the 12th International Joint Conference
on Automated Reasoning (IJCAR 2024), Nancy, France, July 2, 2024. CEUR
Workshop Proceedings, vol. 3717, pp. 91–110 (2024)

[49] Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via Cube-and-Conquer. In: Creignou, N., Berre,
D.L. (eds.) Theory and Applications of Satisfiability Testing - SAT 2016 - 19th
International Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Lec-
ture Notes in Computer Science, vol. 9710, pp. 228–245. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40970-2 15

[50] Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.)
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 6598–6606
(2018). https://doi.org/10.1609/AAAI.V32I1.12209

[51] Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I.S., Ganesh, V.: A SAT-
based resolution of Lam’s problem. In: Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pp. 3669–3676 (2021). https://doi.org/10.1609/AAAI.V35I5.16483

[52] Brakensiek, J., Heule, M., Mackey, J., Narváez, D.E.: The resolution of Keller’s
conjecture. J. Autom. Reason. 66(3), 277–300 (2022) https://doi.org/10.1007/
S10817-022-09623-5

[53] Li, Z., Bright, C., Ganesh, V.: A SAT solver + computer algebra attack on the
minimum Kochen-Specker problem. In: Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea,
August 3-9, 2024, pp. 1898–1906 (2024)

[54] Semenov, A.A., Chivilikhin, D., Pavlenko, A., Otpuschennikov, I.V., Ulyantsev,
V., Ignatiev, A.: Evaluating the hardness of SAT instances using evolutionary

37

https://doi.org/10.1007/11814948_13
https://doi.org/10.24963/IJCAI.2022/263
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1609/AAAI.V32I1.12209
https://doi.org/10.1609/AAAI.V35I5.16483
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5


optimization algorithms. In: Michel, L.D. (ed.) 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, Montpellier, France
(Virtual Conference), October 25-29, 2021. LIPIcs, vol. 210, pp. 47–14718. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2021). https://doi.org/10.
4230/LIPIcs.CP.2021.47

[55] Semenov, A., Zaikin, O., Kochemazov, S.: In: Pardalos, P.M., Rasskazova, V., Vra-
hatis, M.N. (eds.) Finding effective SAT partitionings via black-box optimization,
pp. 319–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9
11

38

https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.1007/978-3-030-66515-9_11
https://doi.org/10.1007/978-3-030-66515-9_11

	Introduction
	Preliminaries
	Boolean satisfiability problem
	Cryptographic hash function
	MD5
	SHA-1
	SHA-256

	New type of intermediate inverse problems for cryptographic hash functions
	Intermediate inverse problems
	Intermediate inverse problems for MD5, SHA-1, and SHA-256

	SAT encoding
	Description of encodings
	Comparison of SAT encodings
	Encoding intermediate inverse problems

	On runtimes of intermediate inverse problems
	Solving intermediate inverse problems by Kissat
	Predicting runtimes of hard inverse problems

	Parameterizing Kissat by ParamILS on intermediate inverse problems
	Approach
	Choosing algorithm configurator
	Configuration space for Kissat

	Preimage attacks by parameterized Kissat
	Experimental setup
	Inverting 24-step SHA-1
	Inverting 29-step MD5
	Inverting 19-round SHA-256

	Discussion
	Real runtime vs predicted runtime
	Second preimage attacks
	Reproducibility
	Comparison with other methods

	Related work
	Conclusion
	Acknowledgements
	Author contribution
	Funding
	Data availability
	Code availability
	Materials availability
	Conflict of interest
	Ethics approval
	Consent to participate
	Consent for publication




	Random outputs
	Varied Kissat parameters and their Domains
	Found configurations

