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Abstract5

MD5 and SHA-1 are fundamental cryptographic hash functions proposed in 1990s. Given a message6

of arbitrary finite size, MD5 produces a 128-bit hash in 64 steps, while SHA-1 produces a 160-bit7

hash in 80 steps. It is computationally infeasible to invert MD5 and SHA-1, i.e. to find a message8

given a hash. In 2012, 28-step MD5 and 23-step SHA-1 were inverted by CDCL solvers, yet no9

progress has been made since then. The present paper proposes to construct 31 intermediate inverse10

problems for any pair of MD5 or SHA-1 steps (i, i + 1), such that the first problem is very close to11

inverting i steps, while the 31st one is almost inverting i + 1 steps. We constructed SAT encodings12

of intermediate problems for MD5 and SHA-1, and tuned a CDCL solver on the simplest of them.13

Then the tuned solver was used to design a parallel Cube-and-Conquer solver which for the first14

time inverted 29-step MD5 and 24-step SHA-1.15
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1 Introduction21

A cryptographic hash function maps a message of arbitrary finite size to a hash of a fixed22

size [25]. A secure cryptographic hash function must be resistant to preimage attacks, i.e.23

it must be computationally infeasible to invert it by finding a message for a given hash.24

MD5 [37] and SHA-1 [11] are among the most influential and widespread cryptographic hash25

functions. Given a message, MD5 produces a 128-bit hash. MD5’s core component is a26

compression function that operates on a 128-bit internal state in 64 steps. On each step, the27

state is modified by mixing with one 32-bit message word. SHA-1 has a similar design, but28

it produces a 160-bit hash, while its compression function operates in 80 steps. Nowadays29

both MD5 and SHA-1 are used in practice, e.g. to verify the data integrity. Partially this is30

because they are still preimage resistant.31

It is well known that a cryptographic hash function’s resistance can be practically analyzed32

by algorithms for solving the Boolean satisfiability problem (SAT) [6]. Since it is infeasible33

to invert MD5 and SHA-1, their weakened versions are usually considered, where some34

last steps are omitted. In 2007, 26-step MD5 was inverted [10], while for 27- and 28-step35

MD5 it was done in 2012 [22]. In 2008 and 2012, 22- and 23-step SHA-1 were inverted,36

respectively [42, 22]. In all these cases it was done via Conflict-Driven Clause Learning [24]37

(CDCL) solvers. Since 2012, no further progress has been made towards inverting 29-step38

MD5 or 24-step SHA-1 because the corresponding computational problems are extremely39

hard. This paper aims to fill these gaps.40

When the number of steps of a cryptographic hash function is reduced, the inverse41

problem can be further simplified by reducing the number of known hash bits [35, 4]. For42

example, in case of MD5, 29 steps and 64 known hash bits instead of 128 can be considered.43

However, even if this inverse problem is solved, it is not clear if any progress compared to44

inversion of 28-step MD5 has been made as a result. It is also possible to weaken an inverse45
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problem by partially assigning some bits in a message [8]. However, again, it is unclear46

whether such weakening contributes to progress or not.47

This paper proposes a new type of intermediate inverse problems. Consider an arbitrary48

cryptographic hash function such that its compression function is divided into steps and on49

each step a k-bit message word m is mixed with an internal state. Note that most existing50

cryptographic hash functions, including MD5 and SHA-1, match this condition. Consider51

a pair (i, i + 1) of steps. The idea is to construct k − 1 intermediate inverse problems by52

simplifying step i + 1, while the first i steps are not modified. In the first problem, in step53

i + 1 the k-bit message word m is replaced by a k-bit word, where k − 1 rightmost bits are54

0s, while the remaining bit is equal to the leftmost bit in m. In the second problem, k − 255

rightmost bits are 0s, while 2 remaining bits are equal to that in m and so on. Finally, in56

the (k − 1)-th problem, only the rightmost bit in m is replaced by 0. As a result, for a57

state-of-the-art CDCL solver the first intermediate problem is slightly harder than inverting58

i steps, then the hardness gradually increases towards inverting i + 1 steps.59

We construct SAT encodings of 31 intermediate inverse problems between 28- and 29-step60

MD5 for one regular hash. Some of them are solved via the CDCL solver Kissat on a61

computer in reasonable time. Kissat’s parameters are tuned on several simplest problems,62

and as a result more intermediate problems are solved. A parallel Cube-and-Conquer solver63

based on the same tuned Kissat inverts 29-step MD5. For SHA-1, its own tuning is64

performed, and as a result the parallel solver inverts 24 steps.65

The paper is organized as follows. Preliminaries on MD5 and SHA-1 are given in Section 2.66

Intermediate inverse problems are proposed in Section 3. SAT encodings are presented in67

Section 4. Experiments on the default Kissat are discussed in Section 5. Section 6 presents68

an algorithm for tuning Kissat. Section 7 describes how Cube-and-Conquer based on the69

tuned Kissat inverted 24-step SHA-1 and 29-step MD5. Finally, related work is discussed70

and conclusions are drawn.71

2 Preliminaries72

This section gives preliminaries on the cryptographic hash functions MD5 and SHA-1.73

Cryptographic Hash Function74

A cryptographic hash function h maps a message of arbitrary finite size to a hash of finite75

size [25]. An obligatory property of any cryptographic hash function is that the mapping76

must be easy to compute, but hard to invert. Consider the following types of resistance.77

1. Collision resistance: it is infeasible to find any two messages x and x′ such that x ̸=78

x′, h(x) = h(x′).79

2. Preimage resistance: for any given hash y, it is infeasible to find such a message x′ that80

h(x′) = y.81

3. Second-preimage resistance: for any given message x, it is infeasible to find x′ such that82

x′ ̸= x, h(x) = h(x′).83

A secure cryptographic hash function must possess all three properties. There are two84

types of preimage attacks: (i) practical preimage attack implies solving an inverse problem,85

i.e. finding a preimage (message) for a certain hash; (ii) theoretical preimage attack is an86

algorithm for solving an inverse problem with lower complexity than brute force.87

The main component of most cryptographic hash functions is a compression function88

that maps an input of fixed size to a shorter output of fixed size. In order to show that89
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such a cryptographic hash function is not secure, it is sufficient to break the resistance of its90

compression function. In this paper we focus on studying the practical preimage resistance91

of compression functions of cryptographic hash functions MD5 and SHA-1.92

MD593

The Message Digest 5 (MD5) cryptographic hash function was proposed in 1992 [37]. It is94

a more secure version of MD4 proposed in 1990 [36]. Given a message of arbitrary finite95

size, padding is applied to obtain a message that can be divided into 512-bit blocks. Then a96

128-bit hash is produced in accordance with the Merkle-Damgard construction [26, 9], i.e.97

the compression function is iteratively applied to the blocks.98

Given a 512-bit message block, MD5 compression function produces a 128-bit output.99

The function consists of four rounds, sixteen steps each, and operates by transforming data100

in four 32-bit registers A, B, C, D. For the first message block, the registers are initialized101

with the constants specified in the standard. Otherwise, the registers are initialized with an102

output produced at the previous iteration. The message block is divided into sixteen 32-bit103

words. In each step, three registers are updated by permuting the current values, while the104

remaining register is updated by mixing one message word, the current values of all four105

registers, an additive constant, and a result of the previous step. The mixing is partially106

done by a round-specific function, while additive constants are step-specific. As a result,107

all sixteen words take part in each round. When all steps are executed, the registers are108

incremented by the values they had after the initialization, and the output is produced as a109

concatenation of A, B, C, D.110

Consider a pseudocode of an MD5 step in Algorithm 1. Here g, 0 ≤ g ≤ 15 is a message111

word index, 1 ≤ i ≤ 64 is a step number, ⊞ is addition modulo 232, and ≪ is circular left112

bit rotation.113

Algorithm 1 The i-th step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func.
Output: Updated values A, B, C, D.

1: temp← Func(B, C, D) ⊞ A ⊞ K[i− 1] ⊞ M [g]
2: A← D

3: D ← C

4: C ← B

5: B ← B + (temp ≪ s)

Inputs for all 64 steps are specified in [37]. The round functions are as follows: (x ∧ y) ∨114

(¬x ∧ z); (x ∧ z) ∨ (y ∧ ¬z); x⊕ y ⊕ z; y ⊕ (x ∨ ¬z).115

In 2004, the first MD5 collisions were published [44]. Regardless, it is still preimage116

resistant and second-preimage resistant.117

SHA-1118

The Secure Hash Algorithm 1 (SHA-1) cryptographic hash function was proposed in 1995119

as another more secure extension of MD4 [11]. The main differences compared to MD5 are120

listed below.121

1. A 160-bit hash is produced.122
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2. The compression function operates in 80 steps (4 rounds, 20 steps each) and returns a123

160-bit output.124

3. Five 32-bit internal registers A, B, C, D, E.125

4. Additive constants are round-specific.126

5. New round functions: (x ∧ y) ∨ (¬x ∧ z); x⊕ y ⊕ z; (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z); x⊕ y ⊕ z.127

6. Instead of using parts of the message M directly in transformations, W is used such that128

W [t] = M [t], 0 ≤ t ≤ 15, and W [t] = (W [t− 3]⊕W [t− 8]⊕W [t− 14]⊕W [t− 16]) ≪ 1129

if 16 ≤ t ≤ 79.130

Consider a pseudocode of a SHA-1 step in Algorithm 2.131

Algorithm 2 The i-th step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func.
Output: Updated values A, B, C, D, E.

1: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ W [i− 1]
2: E ← D

3: D ← C

4: C ← B ≪ 30
5: B ← A

6: A← temp

In 2017, the first SHA-1 collisions were published [43], but it is still preimage resistant132

and second-preimage resistant.133

3 Intermediate Inverse Problems for MD5 and SHA-1134

This section first proposes a new type of intermediate inverse problems for cryptographic135

hash functions, then it describes how such problems can be constructed for MD5 and SHA-1.136

Intermediate Inverse Problems137

Consider an arbitrary cryptographic hash function h such that its compression function f138

is divided into r steps, and on each step an internal state is mixed with a k-bit word m,139

where m is either a message word (like in MD5) or a mix of messages’ words (like in SHA-1).140

Besides MD5 and SHA-1, most existing cryptographic hash functions match this condition,141

e.g. MD4, RIPEMD-160, and SHA-256.142

During preliminary experiments, for different triples (cryptographic hash function, SAT143

encoding, CDCL solver) we attempted to invert modified step-reduced functions, where144

the last step was weakened in different ways. It turned out that if m is not used, then the145

last step does not really make the inverse problem harder for the solver. Based on this146

observation, let us propose the following notation.147

Consider i-step and (i + 1)-step reduced versions of h, where 1 ≤ i ≤ r − 1. Construct148

k − 1 intermediate step-reduced cryptographic hash functions, where the first i steps are149

used as usual, while step i + 1 is weakened as follows. In the j-th intermediate function,150

1 ≤ j ≤ k−1, the word m in step i+1 is replaced by the word mweak such that the rightmost151

k− j bits in mweak are equal to 0s, while the remaining j bits are equal to the leftmost j bits152

in m. Note that this is not the same as replacing m by mweak in the whole h — if m is used153

in several steps, then the proposed action affects only step i + 1. In the j-th intermediate154
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inverse problem it is needed to find a message given a hash produced by the j-th intermediate155

step-reduced hash function.156

The intention behind this approach is that for a state-of-the-art CDCL solver the first157

intermediate problem will be slightly harder than the inversion of i steps, then the hardness158

gradually increases towards the inversion of i + 1 steps.159

Note that if for the j-th intermediate inverse problem between steps i and i+1 a preimage160

is found for a hash, then with probability 1
2k−j the preimage inverts the same hash produced161

by unmodified i + 1 steps because k − j bits of the corresponding word m can be considered162

as random bits that can coincide with k − j 0s with the mentioned probability. This is the163

first take away of the proposed approach — sometimes it is sufficient to solve an intermediate164

inverse problem to invert i + 1 steps.165

Intermediate Inverse Problems for MD5166

During preliminary experiments, we tried to weaken step i + 1 of the MD5 compression167

function for different values of i by deleting Func(B, C, D) from the sum in the first line of168

Algorithm 1. However, it did not lead to simpler inverse problems from a state-of-the-art169

CDCL SAT solver point of view. It was also tried to delete other addends in the first line’s170

sum, to delete the addend B from the fifth line’s sum, and to omit shifting in the fifth line.171

It turned out, that the only action that significantly decreases the hardness is deleting the172

addend M [g] in the first line. Moreover, if M [g] is deleted, then inverting i + 1 steps is173

almost similar to inverting i steps for a CDCL solver.174

A pseudocode of an MD5 step weakened according to the proposed idea is presented in175

Algorithm 3. Here weakM is a 32-bit word, and as a result of two shifts in the first line its176

rightmost 32 − j bits are equal to 0, while the remaining j bits are equal to the leftmost177

j bits in M [g]. Then weakM is used instead of M [g]. Therefore, to form 31 intermediate178

inverse problems with increasing hardness, j should be varied from 1 to 31.179

Algorithm 3 The (i + 1)-th weakened step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func; intermediate hash function number j.
Output: Updated values A, B, C, D.

1: weakM ← (M [g]≫ (32− j))≪ (32− j)
2: temp← Func(B, C, D) ⊞ A ⊞ K[i] ⊞ weakM

3: A← D

4: D ← C

5: C ← B

6: B ← B + (temp ≪ s)

In the rest of the paper, the j-th intermediate hash function between MD5 steps i and180

i + 1, 1 ≤ i ≤ 63, is called (i j/32)-step MD5. Note, that according to this notation j = 32181

corresponds to (i + 1)-step MD5.182

Intermediate Inverse Problems for SHA-1183

Consider a pair (i, i + 1), 1 ≤ i ≤ 79, of SHA-1 steps. Similar to the previous subsection, the184

idea is to weaken step i + 1, while the first i steps are used as usual. During preliminary185

experiments, it was tried to omit operations in Algorithm 2 for different values of i. The186

picture is the same as for MD5 — when the usage of W is omitted, from the SAT solving187
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point of view the inverse problem becomes the same as the inverse of the first i steps. Yet188

omitting any other operation, including the usage of the round function, does not make the189

problem easier. Based on these results, intermediate inverse problems are formed in the same190

way as for MD5, see Algorithm 4.191

Algorithm 4 The (i + 1)-th weakened step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func; intermediate hash function number j.
Output: Updated values A, B, C, D, E.

1: weakW ← (W [i]≫ (32− j))≪ (32− j)
2: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ weakW

3: E ← D

4: D ← C

5: C ← B ≪ 30
6: B ← A

7: A← temp

4 SAT Encoding192

In this study, inverse problems for step-reduced SHA-1 and MD5 compression functions are193

considered as was done earlier in [22, 35]. This section describes the corresponding SAT194

encodings.195

SHA-1 Encoding196

Several SAT encodings of the SHA-1 compression function have been proposed so far [42,197

35, 22, 28]. However, it is well known that at the moment the best one is Vegard Nossum’s198

encoding [35]. Compared to the competitors, it produces more compact CNFs which are199

easier for CDCL solvers [35]. That is why Nossum’s encoding has been used in many further200

studies, e.g. [34, 43].201

Recall that in each SHA-1 step 5-ary addition is performed, see Section 2. In the Nossum’s202

encoding, the column addition algorithm is applied, and each column sum is expressed via a203

pseudo-Boolean constraint which in turn is encoded in the clausal form using the ESPRESSO204

logic minimizer. Vegard Nossum implemented his encoding in the form of the program205

sha1-sat, which is available online1. Given the number of SHA-1 steps and a hash, the206

program produces the corresponding inverse problem in the CNF form.207

For the present study, sha1-sat was extended to maintain intermediate inverse problems208

proposed in Section 3. Assume that (i + 1)-step SHA-1 is considered, where a combination209

of message words, the word W [i], is used as an addend, see Section 3, and the corresponding210

CNF is produced by sha1-sat. To encode the j-th intermediate inverse problem between211

steps i and i + 1, the following additional actions are performed:212

1. An additional 32-bit word weakW is introduced in the form of 32 Boolean variables.213

2. The rightmost 32 − j bits of weakW are assigned to 0 via adding unit clauses to the214

CNF.215

1 https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat
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3. The equality conditions for the leftmost j bits of weakW and the corresponding j bits of216

W [i] are added in the form of j × 2 binary clauses.217

4. 32 Boolean variables of weakW are used instead of W [i]’s 32 variables in the clauses218

where the addition is encoded in step i + 1.219

By using the modified program, CNFs for intermediate inverse problems were constructed220

between the following pairs of SHA-1 steps: (21, 22), (22, 23), and (23, 24) for 10 hashes: 160221

0s, 160 1s, and 8 random ones. Also, for 21, 22, 23, and 24 steps, CNFs for standard inverse222

problems were generated for the same 10 hashes. In Table 1, the characteristics of CNFs for223

23, 23 16/32, and 24 steps are shown.224

Table 1 Characteristics of CNFs that encode inverse problems for the main considered step-
reduced versions of SHA-1 and MD5.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620
MD5 28 7 168 92 520 506 320
MD5 28 16/32 7 424 95 818 524 312
MD5 29 7 392 95 770 524 232

MD5 Encoding225

Recently, several SAT encodings of the MD5 compression function have been proposed. The226

encodings from [10, 22] are not available. The encodings from [40, 46] are available, but we227

decided to extend sha1-sat to support MD5.228

In MD5, in each step 4-ary addition is performed, so the corresponding pseudo-Boolean229

constraint were constructed and encoded in the clausal form using ESPRESSO. As for the230

round functions (see Section 2), clausal forms of three of them were taken from the SHA-1231

encoding, while for the remaining one the clausal form was constructed manually.232

CNFs for intermediate inverse problems were constructed between steps (27, 28) and233

(28, 29) for the same 10 hashes as for SHA-1. In Table 1, the characteristics of main CNFs234

are shown.235

5 Solving Intermediate Inverse Problems by Kissat236

First, we decided to study how a state-of-the-art sequential CDCL solver behaves on inter-237

mediate inverse problems in case of MD5 and SHA-1. Kissat of version 3.0 [5] was chosen238

because this solver and its modifications have showed excellent results in the last three SAT239

Competitions. Of course, other CDCL solver can be also tried, for example, those which are240

oriented on cryptanalysis [41, 32, 21]. All described experiments were performed on a PC241

equipped with the 16-core CPU AMD 3950X and 64 Gb of RAM.242

It turned out that inverse problems for 22-step SHA-1 are simple for Kissat, while for 23243

steps the problems are quite hard, but still can be solved in reasonable time. That is why 33244

inverse problems were considered: the one for 22 steps, 31 intermediate problems between245

steps 22 and 23, and the one for 23 steps. As stated in Section 4, we generated 10 instances246

for each problem — 1 for 160 1s hash, 1 for 160 0s hash, and 8 for random hashes, i.e. 330247

instances in total. With the time limit of 24 hours, 303 SHA-1 instances out of 330 were248
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Figure 1 Boxplots of Kissat3 runtimes on intermediate inverse problems for SHA-1.

solved. Figure 1 shows the runtimes for SHA-1 in the logarithmic scale, where the unsolved249

instances’ values were set to 24 hours. In the figure, the five-number statistics is presented250

in the form of boxplots: outliers are plotted as small circles, whiskers correspond to the251

minimum and the maximum (excluding outliers), the median is plotted in green, while a box252

is plotted from the first quartile to the third quartile.253

As for MD5, 330 instances between steps 27 and 28 were generated in the same way.254

With the time limit of 24 hours, all MD5 instances were solved, see Figure 2.255

According to the results, in case of MD5 the hardness of the intermediate inverse problems256

grows almost linearly. In case of SHA-1 there is a clear leap between steps 22 1/32 and 22257

2/32, then the hardness remains more or less the same, and finally the second leap happens258

between steps 22 27/32 and 22 28/32. Note, that 24 out of 27 unsolved instances were parts259

of the last 5 series, i.e. starting from 22 28/32 steps. Similar experiments were held between260

steps 21-22 of SHA-1 and 26-27 of MD5 and the patterns were the same there.261

Based on these results, the second take away of the approach, proposed in Section 3, is262

formulated: a runtime estimation for an unreachable step can be calculated by extrapolating263

runtimes of the previous step and (some) intermediate problems.264

As mentioned in Section 2, it is sufficient to invert any hash to break the preimage265

resistance of a cryptographic hash function. However, in practice this should be a regular266

hash, say all 0s or all 1s, otherwise it may be hard to justify this choice and prove that it267

was not done for a random pair of input and output. In this paper, 128 1s and 160 1s are268

chosen for MD5 and SHA-1, respectively. Further they are called 1-hashes. Instances of269

intermediate inverse problems between steps 28-29 of MD5 and steps 23-24 of SHA-1 were270

generated for 1-hashes. Recall that at most 28-step MD5 and 23-step SHA-1 are inverted in271

the literature. Out of 31 intermediate problems, 6 were solved by Kissat within the time272

limit of 24 hours in case of MD5. In particular, the intermediate problems with j of 1, 3,273

5, 8, 9, and 10 were solved. Yet only one intermediate problem with j = 20 was solved for274

SHA-1. It means that (28 10/32)-step MD5 and (23 20/32)-step SHA-1 are inverted, and275

this is already a clear progress compared to the literature, but in the next sections we are276

going further.277

The third take away is as follows: by solving intermediate inverse problems, some progress278
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Figure 2 Boxplots of Kissat3 runtimes on intermediate inverse problems for MD5.

can be achieved compared to the state of the art.279

6 Parameterization Algorithm280

A hypothesis behind the proposed method is that simple intermediate inverse problems can281

be leveraged to parameterize Kissat (or, in other words, tune its parameters’ values) to282

solve hard intermediate problems faster or just solve within the time limit if it is not yet283

so. On the one hand, the tuning simplifies problems which are already simple, and it is not284

guaranteed that it will help solving hard problems. On the other hand, all corresponding285

CNFs have a very similar structure. We decided to test this hypothesis in practice.286

Parameterization of SAT solvers is a well-developed field, see [18]. Formally, the general287

problem is to automatically identify a parameter configuration (a set of parameters’ values)288

that maximizes the performance of a SAT solver across a set of instances [18]. Among the289

main parameterization algorithms for SAT are: ParamILS [20], SMAC [19], and GGA [2]. A290

recent implementation of GGA is PyDGGA [1] while that for SMAC is SMAC3 [23]. In this291

study, for this purpose an extension of a simple yet powerful (1+1) evolutionary optimization292

algorithm ((1+1)-EA [30]) is used to have a full control over the tuning process. Another293

reason is that evolutionary optimization algorithms have been successfully applied recently294

to speed up parallel SAT solving [39, 47].295

In short, (1+1)-EA works as follows: a Boolean vector of size k is given, and a series296

of k independent Bernoulli trials [29] with the success probability 1/k is performed. If297

i ∈ {0, . . . , k − 1} corresponds to a successful trial, then the i-th value is flipped. The298

obtained vector is compared with the best one via an objective function, then a new vector299

is generated and so on. It is clear that only binary parameters can be tuned via (1+1)-EA.300

We propose an integer extension of (1+1)-EA that is further called (1+1)-EA-Int. The301

pseudocode is presented in Algorithm 5. This algorithm operates with parameters of arbitrary302

finite sizes by applying the categorical distribution — a discrete probability distribution303

that describes the possible results of a random variable that can take on one of n possible304

categories, each with specified probability [31]. Assume that P is a set of parameters305

values. To choose a new value for the i-th parameter, the function categ_dist(xi, Pi) is306
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called, where xi is the current value of the i-th parameter and Pi, |Pi| = k is a set of307

possible values of the i-th parameter. In this function, a weights vector w of length k is308

formed. First, wi is assigned to 0. Assume that maxdist = max(i − 1, k − i − 2), then309

wi−1 = wi+1 = 2maxdist, wi−2 = wi+2 = 2maxdist−1 and so on. As a result, at least one310

of two elements w0, wk−1 becomes 1. Finally, the probabilities are assigned to parameters311

values as follows: ( w0∑k−1
j=0

wj

, w1∑k−1
j=0

wj

, . . . , wk−1∑k−1
j=0

wj

). The idea is that the closer a value to312

the current one, the higher the probability is, yet any value (except the current one) can be313

chosen with non-zero probability.314

Algorithm 5 (1+1)-EA-Int.

Input: parameters values P , a start configuration x0, an objective function f .
Output: the best found configuration xbest with the objective function’s value f best.

1: n← param_num(x0)
2: ⟨xbest, f best⟩ ← ⟨x0, f(x0)⟩
3: checked_conf ← {}
4: while not termination criteria do
5: xcur ← xbest

6: for i← 0 to n− 1 do
7: with probability 1

n xcur
i ← categ_dist(xcur

i , Pi).
8: if xcur in checked_conf then
9: continue

10: f cur ← f(xcur)
11: checked_conf.add(xcur)
12: if f cur < f best then
13: ⟨xbest, f best⟩ ← ⟨xcur, f cur⟩
14: return ⟨xbest, f best⟩

Consider an example. Assume that a parameter has possible values 1, 2, 5, 10, 25, while its315

current value is 10. Since maxdist = max(3−1, 5−3−2) = 2, it follows that w = (1, 2, 4, 0, 4),316

and the probabilities are ( 1
11 , 2

11 , 4
11 , 0, 4

11 ).317

Note, that additionally in Algorithm 5 all checked configurations are remembered to avoid318

redundant calculations since the objective function is costly.319

In all experiments, given a sample of CNFs and a parameter configuration, the objective320

function f is the sum of Kissat’s runtimes on the CNFs, when the configuration is applied321

to the solver. The goal is to minimize the function on the space of parameter configurations.322

7 Inverting by Parameterized Solvers323

In this section, the parameterization algorithm proposed in Section 6 is applied to tune324

Kissat on simple intermediate inverse problems to invert 24-step SHA-1 and 29-step MD5.325

Experimental Setup326

We implemented the parameterization algorithm from Section 6 in Python, where the objective327

function is calculated in parallel — 1 configuration per CPU core. The implementation is328

available online2. The extended version of sha1-sat (see Section 4) and all generated CNFs329

2 https://github.com/olegzaikin/paramsat
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are available online as well3. The same PC as in Section 5 was used in the experiments.330

The termination criteria were as follows: at most 24 (or 72 in some cases) hours and 1 000331

calculations of the objective function.332

There are 90 parameters in Kissat 3.0, yet 50 of them were excluded from the consideration333

since in preliminary experiments they did not affect the performance. The remaining 40334

parameters are presented in Table 2. All these parameters are integer, and their ranges are335

specified in the solver’s documentation [5]. As a start configuration x0 in Algorithm 5 the336

default Kissat’s configuration was leveraged.337

Table 2 Varied parameters of Kissat.

backbone eliminateclslim reluctantlim sweepdepth
backbonerounds eliminateocclim restartint sweepfliprounds
bumpreasonslimit eliminaterounds restartmargin sweepmaxclauses
bumpreasonsrate emafast shrink sweepmaxdepth
chronolevels emaslow stable sweepvars
compactlim mineffort substituteeffort target
decay minimizedepth substituterounds tier1
definitioncores modeinit subsumeclslim tier2
definitionticks reducefraction subsumeocclim vivifytier1
eliminatebound reluctantint sweepclauses vivifytier2

Inverting 24-step SHA-1338

In preliminary experiments it turned out that a training set must contain at least 10 CNFs339

to obtain a configuration that works better on harder intermediate inverse problems. For340

SHA-1, the training set consisted of 16 CNFs: the last 15 intermediate inverse problems341

between steps 21-22 and inverting 22-step SHA-1, all for 1-hash. These CNFs were chosen342

because the objective function’s value on them is reasonable: 1 hour 58 minutes on 1 CPU343

core. For comparison, on the first 16 intermediate inverse problems between steps 22-23 the344

corresponding value is 44 hours.345

The parameterization algorithm was run three times with seeds 0, 1, and 2 and the time346

limit of 24 hours. It stopped after 11, 12, and 16 hours, respectively, because the limit on347

the objective function calculations (1 000) had been reached. The best result was found with348

seed of 1: the best configuration was updated 13 times, and on the final one the objective349

function’s value was 22 minutes (compared to 1 hour 58 minutes on the default configuration).350

Table 3 contains those 12 parameters which changed their values in the found configuration.351

The tuned and the default Kissat3 were run with the time limit of 24 hours on 64 CNFs:352

31 intermediate ones between steps 22-23, 1 for 23 steps, 31 intermediate ones between353

steps 23-24, and 1 for 24 steps. The results are presented as a cactus plot in Figure 3. The354

default version solved 30 intermediate problems between steps 22-23, while the tuned version355

solved all 31 of them. Both versions inverted 23 steps. Out of 31 intermediate problems356

between steps 23-24, the default version solved 1 problem, while the tuned one coped with 5357

problems. All in all, the tuned version solved 5 more problems, and on most problems it was358

significantly faster.359

3 https://github.com/olegzaikin/sha1-sat
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Table 3 The best Kissat’s configuration found for SHA-1.

Parameter Default value Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1 000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2
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Figure 3 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 22-24 of SHA-1, 1-hash.

According to Figure 3, the hardness of the intermediate inverse problems increases quite360

smoothly in case of SHA-1, that is why it was decided not to run any additional tuning361

since 5 out of 31 intermediate inverse problems between steps 23-24 were already solved by362

the tuned solver. To invert 24-step SHA-1, experiments were run on the supercomputer363

“Akademik V.M. Matrosov”4. Each supercomputer’s node is equipped with a 36-core CPU364

and 128 Gb RAM. At most 5 nodes (180 cores) were taken for one task.365

To parallelize hard intermediate problems, the Cube-and-Conquer [13] approach was366

applied, where a given problem is split via lookahead into subproblems, which are solved by367

a CDCL solver. The lookahead solver march_cu [14] was used to split the inverse problem368

for 24-step SHA-1 into 166 subproblems via the cutoff parameter n=3467. Then the same369

tuned Kissat was run on the subproblems in the form of a 167-core task with the time limit370

of 3 days. For this purpose, the MPI program conquer_mpi was run5, which used 1 core371

4 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
5 https://github.com/olegzaikin/EnCnC
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for the master process and 166 cores for computing processes. Table 4 presents a solution372

that was found in 23 hours. The default Kissat was also run on the same subproblems on373

the supercomputer, yet no solution was found within 3 days.374

Table 4 A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

Inverting 29-step MD5375

For MD5 as a training set the first 16 intermediate inverse problems between steps 27-28 were376

chosen. The parameterization algorithm was run with seeds 0, 1, and 2 with the time limit377

of 24 hours, and it stopped after 4, 3, and 2 hours, respectively. The best result was achieved378

on seed 0: the best configuration was updated 8 times, and on the final one the objective379

function’s value was 4 minutes (compared to 14 minutes on the default configuration).380

The tuning was run one more time starting from the found configuration. This time381

the training set contained the last 15 intermediate problems between steps 27-28, and the382

problem for 28 steps. The reason was that on these 16 CNFs on the found configuration the383

objective function value was 5 hours 27 minutes, that is still reasonable, while on the default384

configuration it was 18 hours 37 minutes. The time limit was increased to 3 days, and the385

algorithm was run three times with seeds 3, 4, and 5. In all cases the time limit was reached:386

the objective function was calculated 584, 698, and 973 times, respectively. The best result387

was found with seed 5: the best configuration was updated 8 times, and the final objective388

function’s value was 1 hour 30 minutes. Table 5 contains those 16 parameters which changed389

their values in the found configuration compared to the default one.390

Table 5 The best Kissat’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumeclslim 1 000 10 000
sweepmaxclauses 4 096 2 048
target 1 2
tier2 6 10
vivifytier2 6 5
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The tuned and the default Kissat3 were run on the PC with the time limit of 24 hours391

on 32 CNFs: 31 intermediate inverse problems between steps 28-29, and the inverse problem392

for 29 steps. The results are presented as a cactus plot in Figure 4. The default version393

solved 6 intermediate problems for j of 1, 3, 5, 8, 9, and 10, while the tuned one solved 10394

problems for j of 1, 2, 3, 5, 6, 7, 8, 9, 11, and 13. As a result, (28 13/32)-step MD5 was395

inverted. The figure clearly shows that the tuned version’s performance is much better.396
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Figure 4 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 28-29 of MD5, 1-hash.

On the next stage, intermediate inverse problems with j of 20, 24, and 28 between steps397

28-29, as well as the inverse problem for 29 steps were considered. For each problem, at most398

180 cubes were generated, a 180-core task was formed, and the tuned Kissat was run on399

each subproblem with the time limit of 24 hours on the supercomputer. On the first two400

problems solutions were found in 4 and 7 hours, respectively, yet nothing was found for the401

remaining two ones. It became clear that the inverse problem for 29 steps is quite hard,402

so this problem was split via march_cu into 74 470 cubes using the threshold n = 5493.403

These cubes were divided into 10 parts to form 10 7-days 180-core tasks with the time limit404

of 15 000 seconds for each subproblem. The first two task were completed with no found405

solution, yet in the third task a solution was found in 37 hours. The corresponding preimage406

is presented in Table 6.407

Table 6 A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8

Discussion408

According to the results, the hypothesis proposed in Section 6 is experimentally confirmed,409

and it gives the fourth take away: tuning a state-of-the-art CDCL solver’s parameters410

on simple intermediate inverse problems allows faster solving of hard intermediate inverse411

problems.412
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Two found configurations for SHA-1 and MD5 differ quite a lot, but the following values413

exist in both of them: definitionticks=100, minimizedepth=100, restartmargin=20, and414

stable=2.415

It seems realistic to invert 25-step SHA-1 via the proposed approach, but for 30-step416

MD5 it is likely that additional effective algorithmic techniques are required.417

Reproducibility418

The preimages were hard to find, but their verification via direct computations takes a fraction419

of a second. The correctness in case of 24-step SHA-1 was verified via the tool verify-420

preimage from Nossum’s repository sha1-sat. As for MD5, it was done by modifying the421

reference implementation from [37] written in C. First, padding (see Section 2), as well as all422

steps but the first 29 ones must be deleted. Then the preimage should be given as an input.423

As a result, 128 1s are produced.424

8 Related Work425

SAT-based cryptanalysis has been applied to cryptographic hash functions of the MD family426

as follows. In [27], practical collision attacks on MD4 and MD5 were performed. In [10],427

39-step MD4 was inverted, while for steps 40-43 it was done in [45]. 26-step MD5 was inverted428

in [10], while for 27- and 28-step versions it was done in [22, 46]. As for the SHA family, the429

situation is as follows. Step-reduced versions of SHA-0, SHA-256, and SHA-3 were inverted430

in [22, 17, 34]. 22- and 23-step SHA-1 were inverted in [42, 22]. In [4], a weakened 24-step431

SHA-1 was inverted, such that the number of known hash bits was reduced from 160 to432

128. In [35], full-step version of SHA-1 was inverted, but most message bits were assigned433

randomly, yet in [8] a similar result was achieved for SHA-256. Algebraic fault attacks on434

SHA-1 and SHA-256 were proposed in [33]. Collisions for SHA-1 were found in [43].435

The aforementioned SAT-based preimage attacks on step-reduced MD5 and SHA-1 are436

practical. Also, theoretical preimage attacks on 62-step SHA-1 and full MD5 exist [12, 38].437

Recently, Cube-and-Conquer has been successfully used to solve the Boolean Pythagorean438

Triples problem [16], the Schur number five problem [15], Lam’s problem [7], and in model439

finding [3].440

9 Conclusions and Future Work441

This paper proposed a new type of intermediate inverse problems between any two steps442

(i, i + 1) of a cryptographic hash function from a wide class. First, these problems are useful443

to make some progress if i steps can be inverted in reasonable time while the inversion of i + 1444

steps is infeasible. Second, the simplest intermediate problems can be used to tune a CDCL445

solver so it can cope with previously unattainable problems. Third, if some intermediate446

inverse problems are solved, a runtime estimation for inverting i+1 steps can be calculated, so447

the corresponding computational resources can be allocated for this purpose. Fourth, in some448

cases it is not even needed to invert i + 1 steps directly since solutions of the intermediate449

inverse problems can be simultaneously preimages of i + 1 steps.450

The main result of the paper is inverting 29-step MD5 and 24-step SHA-1 for the first451

time, thus making a clear progress in solving two hard computational problems.452

In the future we are going to use more sophisticated parametrization algorithms and453

apply the proposed technique to analyze other cryptographic hash functions.454
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