
Finding Effective SAT Partitionings Via
Black-box Optimization

Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

Abstract In the present chapter we study one method for partitioning hard instances
of the Boolean satisfiability problem (SAT). It uses a subset of a set of variables of
an original formula to partition it into a family of subproblems that are significantly
easier to solve individually.While it is usually very hard to estimate the time required
to solve a hard SAT instance without actually solving it, the partitionings of the
presented kind make it possible to naturally construct such estimations via the well-
knownMonte Carlo method.We show that the problem of finding a SAT partitioning
with minimal estimation of time required to solve all subproblems can be formulated
as the problem of minimizing a special pseudo-Boolean black-box function. The
experimental part of the paper clearly shows, that in the context of the proposed
approach relatively simple black-box optimization algorithms show good results in
application to minimization of the functions of the described kind even when faced
with hard SAT instances that encode problems of finding preimages of cryptographic
functions.

1 Introduction

In modern world, many different concepts are used to tackle hard combinatorial
problems. The rapid development of computational hardware in the last few decades
puts a special emphasis on the methods that are able to make use of massive amount
of computational processes provided by today’s computers and supercomputers. One
of the most straightforward approaches of this kind consists in partitioning a hard
problem into a (possibly very large) family of subproblems which are much easier to
solve. However, the question remains, how to construct such partitionings, and how
to distinguish which of the many partitionings is better than the others.

Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia, e-mail:
biclop.rambler@yandex.ru, zaikin.icc@gmail.com veinamond@gmail.com

1

2 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

In the present chapter we focus on just such questions that arise when considering
hard instances of the Boolean satisfiability problem (SAT) [6]. The goal of SAT
is for an arbitrary Boolean formula to answer the question whether there exists an
assignment of its variables that satisfies this formula. Despite the fact that SAT is
NP-complete [25], the progress in practical SAT solving in the recent few decades
is nothing short of spectacular. Today, SAT solvers are routinely used to deal with
many problems arising in a plethora of different areas, such as hardware verification,
model checking, bioinformatics, and cryptanalysis. The major disadvantage of state-
of-the-art SAT solvers is that it is impossible to predict how long will it take a solver
to tackle any particular SAT instance given to it as an input, because in the worst-
case scenario its runtime will be exponential in the number of variables of the input
formula. And while the SAT solvers often work exceptionally well even with SAT
instances over hundreds of thousands of variables, there remain hard SAT instances
that are seemingly impossible to solve at the current level of technology.

In the present chapter we consider the so-called Divide-and-conquer approach
to solving hard SAT instances, see, e.g., [76]. It consists in partitioning an instance
into a family of subproblems and tackling these subproblems individually, with
the possibility to solve them independently in parallel. There exist many ways to
partition a SAT instances, see [34]. In the terminology of [34], we focus on the
plain partitioning variant that uses a subset of variables of a SAT instance to split
it into a family of simpler subproblems. We formally show that it is possible to use
the Monte Carlo method [51] to estimate the time required by any deterministic
complete SAT solving algorithm to solve all subproblems from such a family. This
fact allows one to formulate the problem of finding a set of variables that yields a
SAT partitioning with the smallest runtime estimation as the problem of optimizing
a black-box function that takes as an input a set of variables of a SAT instance and
outputs the corresponding runtime estimation. We consider three different objective
functions of this type that differ in the way the problems from the SAT partitioning
are tackled. Each of them is a pseudo-Boolean black-box costly stochastic function.
Therefore, the range of suitable optimization algorithms is very limited. In particular,
in the context of the chapter we consider several black-box optimization algorithms
that rely only on direct calculations of an objective function (see, e.g., [41]).

In the computational experiments for several SAT-based cryptanalysis instances
we aim to construct good runtime estimations and find the corresponding effective
SAT partitionings. The results of experiments show that having a portfolio of opti-
mization algorithms often helps since there is no algorithm that works better than
the others on all possible inputs. We also checked that for the SAT instances for
which the constructed runtime estimation is not too large, the time required to solve
the corresponding SAT instances via the found partitionings agrees well with the
constructed runtime estimations.

The chapter is organized as follows. In the next section, we briefly provide the
basic notation regarding SAT and SAT-based cryptanalysis. Sect. 3 considers the
technique employed to construct SAT partitionings, i.e. how an original problem
is split into a family of subproblems. Then it proceeds with describing two main
approaches to estimating the time required to solve the corresponding subproblems.

Finding Effective SAT Partitionings Via Black-box Optimization 3

In particular, we provide strict formal justifications showing that the Monte Carlo
method in its original formulation can be applied to the problems at hand. The
main contribution of Sect. 4 is formed by defining three pseudo-Boolean black-box
functions that evaluate the effectiveness of SAT partitionings of the considered kind.
Also, it describes several heuristic improvements that make use of the peculiarities
of hard SAT instances, which encode cryptanalysis problems, and the state-of-the-art
SAT solving techniques. Sect. 5 describes the optimization algorithms that are fur-
ther used to minimize the objective functions. Finally, in Sect. 6 we consider several
hard optimization problems that consist in finding good runtime estimations for rele-
vant cryptanalysis problems, present the results of the corresponding computational
experiments and discuss them.

2 Preliminaries

Binary words are the words over the alphabet {0, 1}. Let us denote by {0, 1}: the set
of all possible binary words of length : , : ∈ N+. The variables that take values from
the set {0, 1} are called Boolean, thus, in some sources, the elements from {0, 1}:
are often called Boolean vectors of length : . The set of all possible binary words of
an arbitrary finite length is denoted as

{0, 1}+ =
∞⋃
:=1
{0, 1}:

By Boolean formula over a set of variables - = {G1, . . . , G: } we mean an expression
that is constructed using specific rules over a finite alphabet which includes the
variables from - , braces and special auxiliary symbols called Boolean connectives.
Usually, it is implied that the Boolean connectives form a complete basis [70].
Hereinafter, we consider Boolean formulas over complete bases {∧,∨,¬} or {∧,¬},
where ∧ is conjunction, ∨ is disjunction, and ¬ is negation. The formulas of the kind
G and ¬G, G ∈ - are called literals (over -). A pair of literals (G,¬G) is called a
complementary pair. A clause is an arbitrary disjunction of different literals among
which no pair is complementary. A Conjunctive Normal Form (CNF) is an arbitrary
conjunction of different clauses.

2.1 Boolean Satisfiability Problem (SAT)

Let � be an arbitrary Boolean formula over - = {G1, . . . , G: }. One can naturally
associate with � a Boolean function 5� : {0, 1}: → {0, 1}. An arbitrary Boolean
vector of length : can then be viewed as an assignment of variables from - . Formula
� is called satisfiable if there exists such U ∈ {0, 1}: that 5� (U) = 1. Such an U is
referred to as a satisfying assignment of �. If there are no assignments of variables

4 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

that satisfy � then the formula is called unsatisfiable. The Boolean satisfiability
problem (SAT) is to determine the satisfiability of an arbitrary formula � [24]. Using
the transformations described in [69], SAT for an arbitrary Boolean formula can be
reduced to SAT for a formula in CNF in polynomial time. Thus, without the loss of
generality, it is possible to consider SAT only in application to CNFs.

SAT is the historically first NP-complete problem. It is clear that the following
problem is NP-hard [25]: for an arbitrary CNF � to find an assignment satisfying
� or to prove that � is unsatisfiable. This problem is also denoted as SAT. Despite
the NP-hardness, there are many subclasses and special cases of SAT for which
it is possible to solve the corresponding instances in reasonable time. These facts
led to the intensive development of computational algorithms for solving SAT. The
resulting algorithms have been successfully applied to various problems [6].

In the present study we use only the SAT solving algorithms that are based on the
Conflict-Driven Clause Learning (CDCL) concept [47, 46]. Today, they perform best
overall in application towide spectrumof problems fromdifferent areas. Informally, a
CDCL algorithm traverses a binary tree representing the process of finding satisfying
assignments of an input Boolean formula in CNF. During this process, it encounters
the so-called conflicts, meaning that some branches of the search tree resulted in
contradictions. CDCL solvers store the information about refuted branches in form
of the learnt clauses [46]. As it follows from their name, they use the information
about conflicts to direct the further traversal of the search tree. The distinctive
feature of CDCL is that the algorithm is complete, therefore not only can it find an
assignment of variables that satisfies the input formula, but it also can prove that
such an assignment does not exist. An important fact for the further constructions
consists in that due to its completeness, the runtime of CDCL is finite on any input
SAT instance.

The practical implementations of CDCL usually employ many different heuristic
techniques that allow them to cope with large industrial problems. Historically, one
of the most successful solvers is the Minisat solver [20] first presented in 2003. It
introduced a simple framework that is easy to improve and experiment with. Even
almost twenty years later, the improved versions of Minisat are still considered to
be among the best performing solvers.

When it comes to hard SAT instances where standard sequential SAT solvers
might not be enough, there exist two main approaches to solve SAT in parallel. The
first one is called the portfolio approach [29] that consists in launching different
SAT solving algorithms (or the same algorithm with different parameters) on the
same SAT instance in parallel. The motivation here is that since CDCL is a complete
algorithm then at some point at least one of the algorithms will manage to solve
the problem. However, in all but the most simple cases it is impossible to give any
predictions when the problem will be solved. The second approach is called the
partitioning approach and it implements the Divide-and-conquer strategy [76]. It
consists in splitting the original problem into several (possibly very many) disjoint
subproblems and solving them in parallel. In that case intuitively each subproblem
should be easier to solve than the original one.

Finding Effective SAT Partitionings Via Black-box Optimization 5

The existing parallel CDCL solvers such as Plingeling, Treengeling, Pain-
LESS, Cryptominisat, and others usually implement a mix of portfolio and parti-
tioning approaches [3]. In addition they use some specific parallel heuristics. How-
ever, they achieved only amoderate success since the speedup from the parallelization
is usually far from linear. In addition to that, the parallel solvers are often not deter-
ministic meaning that several launches of the same solver on the same problem may
yield the answer in drastically different times.

2.2 SAT-based Cryptanalysis

To stimulate the progress, there is always a need for difficult benchmarks that act as
challenges for new generations of SAT solving algorithms. One of the most fruitful
areas that produces a lot of such benchmarks is combinatorics, including various
graph related problems, algebraic problems, etc. Another prominent area that allows
one to construct exceptionally difficult benchmarks is cryptanalysis [15]. In the
present chapter we consider hard SAT instances that are related to the so-called
SAT-based cryptanalysis, which is a subarea of the algebraic cryptanalysis [4].

Let us briefly consider the procedures used to transform cryptanalysis instances
into SAT instances. One can view a large part of such problems in the context of
a general problem to which we will refer as to problem of inversion of a discrete
function [61].

Consider a total function:

5 : {0, 1}+ → {0, 1}+, (1)

defined by some algorithm �(5). Such an algorithm naturally defines a family of
functions of the kind

5= : {0, 1}= → {0, 1}+, = ∈ N+.

Hereinafter, assume that for a particular = the result of �(5) on an arbitrary word
U ∈ {0, 1}= is a binary word of length <, meaning the functions of the following
kind:

5= : {0, 1}= → {0, 1}<. (2)

We will refer to functions (1) and (2) as to discrete functions. Let us additionally
assume that the complexity of the algorithm �(5) is bounded by a polynomial in =.
Then the problem of inversion of a function 5 is formulated as follows: for known
�(5), = and an arbitrary W ∈ '0=64 5= ⊆ {0, 1}< to find such U ∈ {0, 1}= that
5= (U) = W.

If we view �(5) as a program for a Turing machine that works with binary data
[25], then it is possible to show that there exists a procedure with a complexity
bounded by a polynomial in =, that given a program �(5) and an arbitrary = as an
input, outputs a circuit ((5=) over a basis {¬,∧} that defines function 5=. This fact
is a reformulation of the Cook-Levin theorem [14, 44] in the context of a problem

6 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

of inversion of a function of the kind (1). By applying to circuit ((5=) the Tseitin
transformations [69] it is possible to construct a CNF which we denote as � (5=).
Let us refer to � (5=) as to template CNF for 5= [61].

CNF � (5=) has an important property that we will frequently use below. This
property is based on the well-knownUnit Propagation rule [19, 46]. Essentially, it is
a variant of the resolution method [58], when one of the two clauses used to construct
a resolvent consists of a single literal. It works as follows. Let � be an arbitrary CNF
over - and ; be some literal over - . Consider CNF � ′ = ; ∧ �. First, remove from
� ′ all clauses that contain literal ; except the unit clause ;. Then from each clause in
� ′ containing literal ¬; remove this literal. The resulting CNF � ′′ is equivalent to
� ′. The described transformation represents one iteration of Unit Propagation.

Assume that � is some CNF over - . For an arbitrary G ∈ - and X ∈ {0, 1}
let us define the result of the substitution of G = X in CNF � as a CNF � |G=X
constructed by replacing all occurrences of G to X and performing all possible
elementary transformations [12]. Let ;X (G), X ∈ {0, 1} be literal ¬G when X = 0 and
G when X = 1. It is easy to see that CNF ;X (G) ∧ � is satisfiable if and only if CNF
� |G=X is satisfiable. Thus, the application of Unit Propagation to ;X (G) ∧ � can be
interpreted as substitution of G = X to �. During Unit Propagation there can appear
new unit clauses of the kind ;X′ (G ′). Taking into account all of the above, we say
that in this case the value X′ of variable G ′ is derived from a corresponding CNF via
Unit Propagation. The property of the template CNFs we mentioned earlier consists
in the following.

Let 5= be a discrete function of the kind (2). Assume that ((5=) is a Boolean
circuit that specifies 5=, � (5=) is the corresponding template CNF, and - is a set of
Boolean variables from � (5=). Let us outline in - the sets - 8= = {G1, . . . , G=} and
. = {H1, . . . , H<} formed by the variables associated with the inputs and outputs of
circuit ((5=), respectively.

Lemma 1 Suppose that U = (U1, . . . , U=) is an arbitrary assignment of variables
from - 8=. Consider a CNF

;U1 (G1) ∧ . . . ∧ ;U= (G=) ∧ � (5=). (3)

The iterative application of Unit Propagation to (3) will result in the derivation of
all variables from - . In particular, it means that the values H1 = W1, . . . , H< = W<
will be derived such that 5= (U) = W, W = (W1, . . . , W<).

The statements which are close to Lemma 1 can be found in many papers such as
[38, 5, 60, 37].

It was shown in [61] that if W = (W1, . . . , W<) : W ∈ '0=64 5=, then CNF

� (5=, W) = ;W1 (H1) ∧ . . . ∧ ;W< (H<) ∧ � (5=) (4)

is satisfiable and from its satisfying assignment one can extract the assignment U of
variables from - 8= such that 5= (U) = W.

The transition from the inversion problem for a function of the kind (2) to SAT
for some CNF (4) is an essential first step of any attempt at solving cryptanalysis

Finding Effective SAT Partitionings Via Black-box Optimization 7

problems with SAT solvers. In practice it is possible to use various software tools to
perform this step: CBMC [13]; URSA [36]; SAW[11]; CryptoSAT [43]; Grain of Salt
[67]. In the present chapter we use SAT encodings constructed via the Transalg
software tool [53], which takes into account many features that are specific to
cryptographic functions. The detailed comparison of the tools, together with a more
detailed description of the SAT-based cryptanalysis method can be found in [61].

3 Decomposition Sets and Backdoors in SAT with Application to
Inversion of Discrete Functions

In the present section we describe the method that we use to partition a hard SAT
instance into a family of simpler subproblems. Using the notation from [34], we
employ the so-called partitioning approach, which can be viewed as a special case
of data parallelism.

Definition 1 ([35, 34])
Let� be an arbitrary CNF over a set - of Boolean variables. A plain partitioning

of � is a set of formulas
� 9 ∧ �, 9 ∈ {1, . . . , A}

such that for any 8, 9 : 8 ≠ 9 formula �8 ∧ � 9 ∧ � is unsatisfiable and

� ≡ �1 ∧ � ∨ . . . ∨ �A ∧ �.

where ≡ stands for logical equivalence.

Obviously, when one has a plain partitioning of an original SAT instance, SAT for
formulas� 9 ∧�, 9 ∈ {1, . . . , A} can be solved independently in parallel. There exist
various partitioning techniques. For example one can construct {� 9 }, 9 = 1, . . . , A
using the so-called scattering procedure, a guiding path solver, look-ahead solver, or
a number of other techniques described in [34].

The idea to use look-ahead strategy to construct SAT partitionings, first expressed
in [35], was later developed in [32], which presented a SAT solver that combines the
features of CDCL and look-ahead concepts. In more detail, in [32] it was proposed
to use a look-ahead solver as an external procedure that constructs some partitioning
tree. If during this process the look-ahead solver refutes some branch, then this
branch is not considered later. Otherwise, the look-ahead solver uses the special cutoff
heuristics to terminate the construction of a tree along some branch. This branch
represents the so-called cube, i.e. a conjunction of several literals. The resulting set of
A cubes corresponding to cutoff branches of partitioning tree forms a set of formulas
of the kind {� 9 }A9=1 in the context of the plain partitioning strategy from [35]. The
strategy described in [32] was called Cube and Conquer. In the recent years, Cube
and Conquer SAT solvers were used to successfully solve several hard combinatorial
problems related to the Ramsey theory. One of the most significant results in this
area consists in solving the Boolean Pythagorean Triples Problem [33].

8 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

3.1 On Interconnection Between Plain Partitionings and
Cryptographic Attacks

Another area for which the construction of SAT partitionings appears to be relevant
is algebraic cryptanalysis. Below we show that a good plain partitioning of a SAT
instance that encodes some cryptanalysis problem in fact may yield a cryptographic
attack which is significantly better than brute force.

In the previous section we noted that a number of cryptanalysis problems can
be viewed in the general context of the problem of finding preimages for functions
of the kind (2). Assume that 5= is an arbitrary function of the kind (2) defined by
some cipher. For example, 5= can correspond to some keystream generator [50] that
uses an input sequence U of length = (it corresponds to either a secret key or some
intermediate state of the registers) to produce a keystream fragment of length<. The
cryptanalysis problem looks as follows: for a given W ∈ '0=64 5= to find U ∈ {0, 1}=
such that 5= (U) = W. The formulated variant corresponds to the so-called Known
plaintext attack on generator 5= [50]. Suppose that we reduced it to a problem of
finding a satisfying assignment for a CNF of the kind (4). It is entirely possible that
the resulting SAT instance is too hard even for the most cutting edge SAT solvers. It
holds true, for example, in case of such keystream generators as Trivium [10] or Grain
[31]. On the other hand, Lemma 1 states that for an arbitrary U′ = (U′1, . . . , U

′
=),

U′ ∈ {0, 1}= we can consider a CNF of the kind (3), use Unit Propagation to derive
from it the corresponding W′ = (W′1, . . . , W

′
<), such that 5= (U′) = W′, and check

whether W′ is equal to W. If yes, then U′ is the sought key. Otherwise, we check
the next U′. The described method essentially represents a variant of brute force
attack, and its complexity is 2= ×)0, where)0 is the time required to check one key
candidate. For some ciphers it is possible to find a set � ⊂ - with the following
properties:

1. |� | = B,B < =,
2. 2B ·)̂A << 2= ·)0.

Here by)̂A we mean an upper bound on the runtime of some algorithm A that
solves the SAT instances obtained by substituting the values of variables from � to
CNF � (5=, W). If a set � is found such that properties 1-2 hold for the majority of
W ∈ '0=64 5=, then it can be said that there exists a non-trivial guess-and-determine
attack based on guessed bits set � on function 5=.

The guess-and-determine attacks form one of the most voluminous classes of
attacks in algebraic cryptanalysis [4]. It is important to note, that the problems of
inversion of functions of the kind (2) can be effectively reduced to solving systems
of algebraic equations over a finite field (usually, �� (2)), instead of SAT. It does
not change the general concept of a guess-and-determine attack.

Let � be some guessed bits set. From the point of view of the notation introduced
earlier, we can associate with an arbitrary set � = {11, . . . , 1B}, � ⊆ - and an
arbitrary W ∈ '0=64 5= a plain partitioning %(� (5=, W), �) formed by the formulas
of the kind

� (V) ∧ � (5=, W) (5)

Finding Effective SAT Partitionings Via Black-box Optimization 9

over all possible V ∈ {0, 1}B , V = (V1, . . . , VB), where

� (V) = ;V1 (11) ∧ . . . ∧ ;VB (1B).

Let us apply to an arbitrary formula of the kind (5) some complete CDCL SAT
solver. If the properties listed above are satisfied for a considered � then we have
a non-trivial guess-and-determine attacks based on � on function 5=, which uses a
SAT solver in the role of the algorithm A. Note, that in terms of the notation from
[34], formula � (V), V ∈ {0, 1}B in (5) is a cube over set �.

We have just described a simple method for constructing SAT partitionings: for
an arbitrary set � ⊆ - construct a set of formulas of the kind (5) over all possible
V ∈ {0, 1} |� | (hereinafter by {0, 1} |� | we denote the set of all possible assignments
of variables from �). It is assumed that after this one applies some complete SAT
solving algorithm to CNFs (5). The above strongly correlates with a well known
notion of strong backdoor sets introduced in [71].

Let � be an arbitrary CNF over - , and �, |� | = B, be an arbitrary subset of - .
Let us use the following notation:

� [V/�] = � (V) ∧ �, (6)

where V = (V1, . . . , VB), V ∈ {0, 1} |� | .

Definition 2 Let � be an arbitrary CNF over a set of variables - and �, � ⊆ - be
an arbitrary nonempty set. Let us refer to the set � as decomposition set for CNF
�. The set of formulas of the kind (5) for all possible V ∈ {0, 1} |� | is called a SAT
partitioning of � generated by decomposition set �.

Definition 3 ([71])
Let � be an arbitrary CNF over a set of variables - , and let A be a polynomial-

time algorithm. A nonempty set �, � ⊆ - , is a strong backdoor set for � w.r.t.
algorithm A if for each V ∈ {0, 1} |� | algorithm A decides formula � [V/�].

Thus, a strong backdoor set is such a decomposition set � ⊆ - , that SAT for
an arbitrary CNF of the kind (6) can be solved in polynomial time. It is important
to note that from Lemma 1 it follows that when 5= is an arbitrary discrete function
of the kind (2), then in CNFs � (5=), � (5=, W) the set - 8= is the strong backdoor
set w.r.t. the Unit Propagation rule. Below let us refer to such a set as strong Unit
Propagation backdoor set (SUPBS).

Further we show how to relinquish the requirement thatAmust have a polynomial
time complexity and employ in the role ofA a CDCL SAT solver with finite runtime
on an arbitrary input. Taking all this into account it is possible to define another
subclass of decomposition sets.

Definition 4 ([66])
Assume that A is an arbitrary complete SAT solving algorithm, and � is an

arbitrary CNF over the set - of Boolean variables. Denote by C (A, �) the runtime

10 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

of A on �. A nonempty set � ⊆ - is called a Non-Deterministic Oracle Backdoor
Set (NOBS) [66] for CNF � w.r.t A if∑

V∈{0,1} |� |
C (A, � [V/�]) < C (A, �).

In other words NOBS is such a decomposition set � ⊆ - that the total runtime of
A over all SAT instances in the SAT-partitioning %(�, �) generated by � is lower
than the runtime of A on the original CNF �.

Hereinafter we study only the SAT partitionings generated by decomposition
sets in the context of Definition 2. In the next subsection we show that for SAT
partitionings from this class it is possible to naturally define the measures of their
effectiveness. In the role of such measures we use the estimations of the time re-
quired to solve all SAT instances from the corresponding SAT partitioning. We say
that a SAT partitioning %1 is more effective than SAT partitioning %2 if the value
of the introduced measure for %1 is lower than that for %2. When considering prob-
lems of inversion of cryptographic functions we can use effective SAT partitionings
to construct non-trivial guess-and-determine attacks. The set which generates the
corresponding SAT partitioning in that cases acts as a set of guessed bits.

To define the measures of SAT partitionings’ effectiveness we employ the Monte
Carlo method. We would like to note, that this term is often used without any strict
formal justifications, when it basically implies the use of random sampling. Belowwe
present the formal basis that allows one to use theMonte Carlo method in its classical
form [51] to evaluate the effectiveness of SAT partitionings. For the first time the
corresponding results were presented in papers [63, 62], however, similar ideas,
albeit without strict justification, were employed in earlier works, e.g., [49, 22, 68].

3.2 Using Monte Carlo Method to Estimate Runtime of SAT-based
Guess-and-determine Attacks

So, let us consider the inversion problem for a function of the kind (2) for a known
image W ∈ '0=64 5=. First reduce it to the problem of finding a satisfying assignment
of CNF � (5=, W). Assume that - is the set of variables from � (5=, W). To solve SAT
we will use a complete deterministic SAT solver A.

Consider an arbitrary decomposition set � ⊆ - , � = {11, . . . , 1B}. Define a
uniform distribution over set {0, 1}B . With an arbitrary V = (V1, . . . , VB), randomly
chosen from {0, 1}B , let us associate the value of random variable b which is equal
to runtime of A on the corresponding CNF of the kind (5). Denote the spectrum
of values of b over all possible CNFs of the kind (5) as (?(b) = {b1, . . . , b&}.
It is important to note that b has a finite expected value � [b] and finite variance
+0A (b) due to the fact thatA has finite runtime on any CNF. The following fact was
established in [62].

Finding Effective SAT Partitionings Via Black-box Optimization 11

Theorem 1 Let� = � (5=, W) be aCNFof the kind (4) over a set of Boolean variables
- . For an arbitrary � ⊆ -, |� | = B consider the SAT partitioning %(�, �) formed by
the formulas of the kind (5). Assume thatA is a complete deterministic SAT solving
algorithm, b is the random variable introduced above and) (A, �, �) is the total
runtime of A on all SAT instances from %(�, �). Then

) (A, �, �) = 2 |� | · � [b] . (7)

Proof Assume that all conditions of the theorem are satisfied. Consider random
variable b and its spectrum (?(b) = {b1, . . . , b&}. Note, that (?(b) is formed by
finite positive real numbers. Let us associate with b the possibility space Ω, the
elements of which are Boolean vectors from {0, 1}B . With each b 9 ∈ (?(b), 9 ∈
{1, . . . , &} we link a set Ω 9 , Ω 9 ⊆ Ω, formed by Boolean vectors V = (V1, . . . , VB)
such that the runtime of A on each CNF of the kind (5) is b 9 . Let us introduce the
notation #b 9 = |Ω 9 |. Consider the set of numbers

%(b) =
{

#b1

2B
, . . . ,

#b&
2B

}
.

It is clear that the numbers from %(b) can be viewed as the probabilities with
which random variable b takes corresponding values from its spectrum. Thus, %(b)
is a probability distribution of random variable b. Taking all this into account it holds
that:

) (A, �, �) =
&∑
9=1

#b 9 · b 9 = 2B ·
&∑
9=1

#b 9
2B
· b 9 = 2B · � [b] .

Thus, (7) holds. �

Formula (7) justifies the use of the Monte Carlo method for estimating the value
of) (A, �, �). Indeed, let us denote by b; , . . . , b# the values of b observed in
independent probabilistic experiments. We assume that in each of the latter the
vector V is chosen from {0, 1}B with respect to the uniform distribution. Since A
is a complete deterministic algorithm for solving SAT, it means that b1, . . . , b#

can be viewed as a single observation of # independent random variables with the
same distribution, expected value � [b] and finite variance +0A (b). Let us consider
a random variable

1
#
·
#∑
9=1
b 9 . (8)

We apply to (8) the Chebyshev’s inequality [23]:

%A

������ 1
#
·
#∑
9=1
b 9 − � [b]

������ ≤ n
 ≥ 1 − +0A (b)

n2 · #
. (9)

From (9) it follows that the value of � [b] can be estimated by the values of
(8) with an arbitrary tolerance n > 0 by increasing the number of observations # .

12 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

However, when constructingMonte Carlo estimations for functions (7) in application
to practical problems, it is important to take into account several issues. The first issue
is thatwe can construct an accurate estimation only if the variance+0A (b) is relatively
small. Unfortunately, in practice it takes place quite rarely. For example, in [64] it was
noted that when calculating the values of (8) for cryptanalysis of the Bivium cipher
[10], the random samples of size # < 104 result in overly optimistic estimations.
It happens because hard SAT instances form relatively small portion of the SAT
partitioning and therefore they are often absent in samples of small sizes. This fact
leads to the significant growth of sample variance with the increase of the sample
size. The conclusion of [64] was that such effects are caused by the phenomenon
known as heavy-tailed behavior of complete SAT solvers [27]. Another issue that has
to be taken into account is that if we apply the described method to cryptographic
functions, then even when +0A (b) is small, we construct the estimation of an attack
runtime only for a single specific W ∈ '0=64 5=. Nevertheless, the construction of
Monte Carlo estimations for (7) and similar functions is of particular interest not
only in the context of cryptanalysis, but also for the problems in which the goal is to
prove the unsatisfiability of some CNF (e.g., in verification problems [42]).

Another approach to estimating the runtime of guess-and-determine attacks on
functions of the kind (2) was described in [66]. Once again, consider the problem of
inversion of an arbitrary function of the kind (2). However, this time our goal is to
construct a guess-and-determine attack on 5=, for which the runtime estimation does
not depend on particular W ∈ '0=64 5=.

Assume that there is an algorithm �(5) that defines 5=, a circuit ((5=), and the
corresponding template CNF � = � (5=) over a set - of Boolean variables. Let us
outline in - the subset - 8= = {G1, . . . , G=} formed by the variables corresponding
to the inputs of circuit ((5=), and the subset . = {H1, . . . , H<} of variables cor-
responding to ((5=) outputs. The notations � [U/- 8=] and � [W/.] (for arbitrary
U ∈ {0, 1} |- 8= | and W ∈ {0, 1} |. | , respectively) that we use below are similar in spirit
to (6).

The main distinction between the guess-and-determine attack described further
from the one outlined above consists in the following: we limit the runtime of SAT
solverA by some g on CNFs from a SAT partitioning generated by �. If the runtime
of A on an arbitrary CNF from the partitioning exceeded g then A is interrupted.

The notions we introduce further are based on the property formulated in Lemma
1. Recall that according to this property, for an arbitrary U ∈ {0, 1} |- 8= | the appli-
cation of Unit Propagation to CNF � [U/- 8=] results in derivation of values of all
variables from - including the value of 5=. For an arbitrary set � ⊆ - let us refer
to the values of its variables derived by Unit Propagation from CNF (3) as to an
assignment induced by U.

Define a uniform distribution over {0, 1}=. Fix an arbitrary � ⊆ -\. . With a
randomly chosen U ∈ {0, 1}= associate the assignments V(U) and W(U) = 5= (U) of
variables from � and . , respectively, which were induced by U from CNF (3). Con-
sider CNF � [W(U)/., V(U)/�] where � = � (5=). Let us denote by C (A, �, �, U)
the runtime of A on the input � [W(U)/., V(U)/�]. Assume that the value g > 0 is
fixed to some constant. Then consider the following value:

Finding Effective SAT Partitionings Via Black-box Optimization 13

?� (g) =
{U ∈ {0, 1}= : C (A, �, �, U) ≤ g}

2=
(10)

The numerator of (10) represents the number of such U ∈ {0, 1}= for which CNF
� [W(U)/., V(U)/�] is decided by A in time ≤ g. The denominator of (10) is the
number of all U. Therefore, (10) is essentially the probability of the following event:
that a randomly selected U ∈ {0, 1}= induces such assignments V(U) and W(U) that
A decides � [W(U)/., V(U)/�] in time ≤ g.

Definition 5 ([66])
An arbitrary nonempty decomposition set �, � ⊆ -\. , |� | = B, with prop-

erties described above is called an Inverse Backdoor Set (IBS) with parameters
(B, g, ?� (g)) for � (5=) w.r.t. algorithm A.

In [66] there was introduced a new class of guess-and-determine attacks. They
are based on the following two definitions.

Definition 6 (IBS-based elementary guess-and-determine attack, [66])
Consider the inversion problem for a function 5= of the kind (2). Assume that

we have an arbitrary W ∈ '0=64 5= that corresponds to some U ∈ {0, 1}= (i.e.
W = 5= (U)).

1. Let � be an IBS with parameters (B, g, ?� (g)) and V ∈ {0, 1}B be an assignment
to variables of �.

2. Construct CNF � [W/., V/�] and run SAT solver A on it.
3. If the runtime ofA on this SAT instance exceeds g, interrupt the solving process

and move to another V ∈ {0, 1} |� | .
4. For V = V(U) algorithm A will find a satisfying assignment for � [W/., V/�] in

time ≤ g with probability ?� (g). This means that in this case A will compute U
s.t. 5= (U) = W.

It is possible that the analysis of some W leads to no result because for each formula
� [W/., V/�], V ∈ {0, 1} |� | either the runtime ofA exceeded g or the unsatisfiability
was proved. In that case due to the cryptographic context we can consider another
element from '0=64 5= that is different from W. For example, if 5= is some keystream
generator then we can consider a fragment of keystream of size < that follows after
W. Thus, we have the following iterative guess-and-determine attack.

Definition 7 (IBS-based guess-and-determine attack, [66])
Consider the inversion problem for a function 5= of the kind (2).

1. Let W1, . . . , WA be observed outputs of function 5=. These outputs correspond to
inputs U1, . . . , UA .

2. Let � be some IBS with parameters (B, g, ?� (g)), ?� (g) > 0.
3. A guess-and-determine attack based on IBS � consists in successive application

of elementary attack, as described in Definition 6, to outputs W1, . . . , WA .
4. The attack is said to be successful if for at least one 9 ∈ {1, . . . , A} the corre-

sponding inversion problem for 5= is solved.

14 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

For an arbitrary function of the kind (2) by the runtime of a corresponding guess-
and-determine attack we mean the time required by this attack until at least one
image of function 5= is inverted.

Definition 8 Let %∗A be the probability of the event that a guess-and-determine attack
from Definition 7 is successful. Let us say that this attack is statistically significant
if %∗A ≥ 0.95.

Let us denote the runtime of a statistically significant guess-and-determine attack
as) (A, �, �, g), where � = � (5=). The following result was implicitly presented
in [66].

Theorem 2 Consider an inversion problem for a function 5= of the kind (2). Assume
that in the context of this problem � is an arbitrary IBSwith parameters (B, g, ?� (g)),
?� (g) > 0. Then there exists a statistically significant guess-and-determine attack
based on IBS � with runtime

) (A, �, �, g) = 2B · g ·
⌈

3
?� (g)

⌉
. (11)

Proof Assume that the conditions of the theorem are satisfied. In accordance with
Definition 6 the ?� (g) is the probability thatA will invert an arbitrary W ∈ '0=64 5=
after traversing all the V ∈ {0, 1} |� | , and spending on each V the time ≤ g. If we con-
sider the inputs U1, . . . , UA independently chosen from {0, 1}= and the corresponding
outputs W1, . . . , WA of 5= then it is easy to see that

%∗A = 1 − (1 − ?� (g))A .

Assume that A =
⌈

3
?� (g)

⌉
and consider the value

(1 − ?� (g))
⌈

3
?� (g)

⌉
≤ (1 − ?� (g))

3
?� (g) .

The value in the right hand side of the latter inequality monotonically increases with
the decrease of ?� (g) and does not exceed 4−3 ≈ 0.04978. �

We would like to additionally note that the value ?� (g) does not depend on a
specific output of 5=, and thus (11) characterizes the runtime of the described attack
for

⌈
3

?� (g)

⌉
arbitrary outputs of 5= induced by random inputs.

Similarly to function (7) the values of function (11) can be estimated using
the Monte Carlo method. In more detail, we can use this method to estimate the
probability ?� (g). For this purpose let us associate with the possibility space Ω =

{0, 1}= the random variable Z that takes values from the set {0, 1}. If for an arbitrary
U ∈ {0, 1}= the algorithmA decides the satisfiability of CNF� [W(U)/., V(U)/�] in
time≤ g, thenwe say that Z = 1, otherwise Z = 0. It is clear that Z is a randomvariable
with the spectrum (?(Z) = {1, 0} and probability distribution {?� (g), 1 − ?� (g)}.
Thus, Z is the Bernoulli random variable with success probability ?� (g). Therefore,
� [Z] = ?� (g), +0A (Z) = ?� (g) · (1− ?� (g)). Taking this into account let us apply
the Chebyshev’s inequality to produce the following statement (similarly to (9)):

Finding Effective SAT Partitionings Via Black-box Optimization 15

%A

������ 1
#
·
#∑
9=1

Z 9 − ?� (g)

������ ≤ n
 ≥ 1 − 1

4 · n2 · #
. (12)

The right hand side of (12) makes use of the fact that the function G · (1− G) achieves
its maximum over [0, 1] in G = 0.5.

Note, that (12) looks beneficially compared to (9) because it lacks the unknown
variance. Thus, in the IBS-based attacks we can guarantee the precision of the
constructed estimations of their runtime by increasing the size # of a random
sample. From the other hand, the method presented in [63, 62] makes it possible
to construct runtime estimations for arbitrary SAT partitionings, including that for
unsatisfiable CNFs, while IBS-based approach can not be applied to the latter.

4 Practical Aspects of Evaluating Effectiveness of SAT
Partitionings

In this section we describe how we can represent the problem of finding an effective
SAT partitioning as a black-box optimization problem. We also consider several
implementation level details that make it possible to sometimes substantially improve
the performance of the proposed approach in practice.

First, let us briefly recapture the results of the previous section. It was shown that
given a CNF� over a set of Boolean variables - and some subset � ⊆ - it is possible
to use this subset to partition � into a family of (usually) easier subproblems. Due to
peculiar features of SAT, it is entirely possible that for a given SAT solving algorithm
A its runtime on an original problem can be significantly higher than its total runtime
on all subproblems from a constructed SAT partitioning [40]. In the previous section
we introduced two main ways for evaluating the effectiveness of SAT partitionings.
The functions (7) and (11) represent the essence of these approaches. Regardless of
the approach, we want to find a SAT partitioning that has the best effectiveness.

In practice, it is infeasible to compute the exact values of (7) and (11) because
it is equivalent to solving the original problem. However, as it was noted above, the
Monte Carlo method makes it possible to construct probabilistic estimations of (7)
and (11) that can often be computed in realistic time. The corresponding functions
for (7) and (11), respectively, look as follows:

ΦA,�,# (�) =
2B

#
·
#∑
9=1
b 9 , (13)

ΨA,�,# ,g (�) = 2B · g · 3∑#
9=1 Z

9
. (14)

16 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

It should be noted that for (14) if the value in the denominator is equal to zero,
then we assume that the function’s value is +∞. Also, � = � (5=, W) in (13) and
� = � (5=) in (14).

Let us consider functions (13) and (14) in more detail. Note, that when computing
the values of (13) and (14) one needs to generate a random sample of size # , observe
values of a corresponding random variable and then perform simple arithmetic
operations. The # observations of random variable in case of (13) mean measuring
the runtime of a SAT solving algorithm A on the # problems forming the sample.
For (14) it is necessary to not only measure the runtime of A but to also interrupt
it once the time limit g is exceeded. It means that the functions (13) and (14) are
not defined analytically and thus can be viewed as black-box functions. Therefore,
taking into account all of the above we can move from the problem of finding a
SAT partitioning with the best value of (7) or (11) to the problem of finding a set
� that yields a minimum of the function (13) or (14), respectively, over some finite
search space (ideally, over 2-) for fixed A, �, #, g. Thus we have the formulation
of the problem of finding an effective SAT partitioning in form of the Black-box
optimization problem and can apply to its solving the corresponding methods.

4.1 Narrowing Search Space to SUPBS

As it is the case for all optimization algorithms, if there is a possibility to reduce
the search space – it must be used. Fortunately, in the case of functions (13) and
(14), Lemma 1 provides just the opportunity to do so, at least for major classes of
problems. Essentially, since from Lemma 1 it follows that the variables from - 8=

form a SUPBS (see Sect. 3.1) for both � (5=) and � (5=, W), then they can be viewed
as much more important than the other variables in �. This fact fits nicely with the
cryptographic specifics of the problems considered in later sections. Thus, we can
narrow down the search space as follows: we choose a set � only from the set of
subsets of a set - 8=. Note, that from Lemma 1 it follows that for � = - 8= the values
of (13) and (14) can be computed effectively in polynomial time in the size of binary
description of CNF �.

So, assume that the set of possible alternatives of � is 2- 8= , - 8= = {G1, . . . , G=}.
Then we can represent any � ⊆ - 8= by a Boolean vector _ = (_1, . . . , _=), assuming
that _8 = 1, 8 ∈ {1, . . . , =} if and only if G8 ∈ �. Otherwise, _8 = 0. Taking this into
account, (13) and (14) are pseudo-Boolean functions [8]:

ΦA,�,# : {0, 1}= → R,ΨA,�,# ,g : {0, 1}= → R.

For an arbitrary _ ∈ {0, 1}= the value of, say,ΦA,�,# (_) is computed as follows:
first we construct a set � corresponding to _. Then for this � we consider # inde-
pendent observations of random variable b : b1, . . . , b# and compute (8). The value
of ΨA,�,# ,g (_) is computed in a similar fashion according to (14).

Finding Effective SAT Partitionings Via Black-box Optimization 17

4.2 Applications of Incremental SAT Solving

It is quite clear that when computing values of (13) it is necessary to solve many
similar SAT instances. As it happens, there is a special SAT solving technique that
makes it possible to sometimes increase the performance of SAT solvers on such
tasks. It is called incremental SAT solving and was described, for example, in [21].
Below let us briefly recall one of its variants that we can use in practice when
computing the function (13).

Consider SAT for an arbitrary CNF � over the set - of Boolean variables. Let
� = {11, . . . , 1B}, � ⊆ - be a decomposition set that generates SAT partitioning
%(�, �). Assume that there is a sequence d1, . . . , d: , : ≥ 2, d8 = (V81, . . . , V

8
B),

d8 ∈ {0, 1} |� | , 8 = 1, . . . , : of assignments of variables from �, and our goal is to
solve SAT for CNFs

� (d1) ∧ �

· · ·
� (d:) ∧ �

where � (d8) = ;V81 (11) ∧ . . .∧ ;V8B (1B). The essence of the incremental SAT solving
technique consists in the augmentation of the standard CDCL algorithm that allows
it to process a sequence of CNFs � (d1) ∧�,� (d2) ∧�, . . . , � (d:) ∧�, in a single
launch of SAT solver. For this purpose the literals of the kind ;V81 (11), . . . , ;V8B (1B)
are not added to � as unit clauses. Instead, the SAT solver uses them as the so-
called assumptions [21]. It means that it treats V81, . . . , V

8
B as guessed values of the

corresponding variables. Thus, it assigns the value V81 to 11 the same way it would
do it when following an arbitrary path in the search tree. As a result of this trick,
any learnt clause that was derived while processing � (d8) ∧ � can be reused when
solving � (d 9) ∧ �, 8 ≠ 9 or even �. Observe that � (d8) naturally corresponds to
the elements of a random sample used when computing (13). It is currently unclear
whether the incremental processing can be naturally applied to computing (14).

In practice the incremental SAT solving has several specific features that should
be taken into account. As it was already noted, the learnt clauses generated for one
assignment of variables from � can be reused while solving SAT for another. It
means that we can solve not individual instances, but blocks of : instances per single
launch of the SAT solver, : > 1. The value of : has a significant impact on the
performance of the incremental SAT solver and is usually chosen to be relatively
small, e.g., 10 ≤ : ≤ 100. Since one of the benefits of incremental SAT solving
consists in not having to initialize the solver for each particular instance, it means
that the effect tends to be better when individual instances are relatively easy and
can be solved in tens of seconds at most. Otherwise, it is often the case that the
state-of-the-art preprocessing and inprocessing methods yield better results when
solving � (d8) ∧ � individually.

18 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

4.3 Finding Partitionings via Incremental SAT

As it follows from the previous subsection, using incremental SAT we can decrease
the time required by a solver to compute ΦA,�,# (�) especially for larger # . It
appears to be extremely worthwhile in the case when we use � to solve SAT for �,
i.e. when we need to process all #=2 |� | subproblems from a partitioning.

The goal of the function introduced in [75] is to evaluate the effectiveness of SAT
partitionings using state-of-the-art incremental SAT solvers. Consider a Boolean
hypercube {0, 1} |� | , |� | = B. With an arbitrary 8 ∈ {1, . . . , 2B} associate an B-bit
vector d8 which represents the number 8 − 1 in binary. Consider {0, 1} |� | as a set of
vectors of the kind d8 over all possible 8 ∈ {1, . . . , 2B}. Fix an arbitrary : : 2 ≤ : < 2B
and split {0, 1} |� | into distinct subsets of the following kind:

�1 = {d1, . . . , d: }, �2 = {d:+1, . . . , d2: }, . . . ,
�*−1 = {d (*−2)×:+1, . . . , d (*−1)×: }, �* = {d (*−1)×:+1, . . . , d2B } (15)

In (15), * = d 2B
:
e, 2B = : ·

(
d 2B
:
e − 1

)
+ |�* |, |�* | ∈ {1, . . . , :}. Further let us use

the following notation.
�� = {�1, . . . , �* }

We will refer to �� as to an interval partition of rank : of hypercube {0, 1} |� | .
The basic idea of the approach presented in [75] is to allow a SAT solver to

process all vectors from an arbitrary interval � ∈ �� incrementally when solving the
subproblems from a SAT partitioning %(�, �).

It is possible to define the effectiveness of %(�, �) with respect to a complete
deterministic incremental SAT solver A in a similar way as it was done for (7).
Associate with {0, 1} |� | and its interval partition �� of the kind (15) a value [, the
spectrum of which is formed by all possible runtimes of A on intervals from ��.
The possibility space associated with [is ��. Define a uniform distribution over
��. Let us denote by) (A, �, �, ��) the time required to solve all problems from
a SAT partitioning %(�, �) by incremental SAT solver A that employs the interval
partition �� of the hypercube {0, 1} |� | . Then, similar to (7) it holds that

) (A, �, �, ��) = * · � [[] . (16)

Now let us define a pseudo-Boolean function the values of which will estimate (16)
for various � and the corresponding interval partitions (15) with fixedA, �, and #:

ΥA,�,# (�, ��) =
*

#
·
#∑
9=1
[9 . (17)

In (17) by [9 , 9 ∈ {1, . . . , #} we denote the values of random variable [observed
in # independent observations. In each experiment an interval � is first randomly
chosen from �� according to the uniform distribution. Then an incremental SAT

Finding Effective SAT Partitionings Via Black-box Optimization 19

solverA is launched on �. The observed value of [is the total runtime ofA over all
problems from �.

5 Employed Optimization Algorithms

The objective functions (13), (14), and (17) proposed in two previous sections
are pseudo-Boolean black-box costly stochastic functions. Therefore they can be
minimized by pseudo-Boolean black-box optimization algorithms based on direct
calculations (see, e.g., [1, 41, 45, 57]). In this section several such algorithms are
described that are further used in Sect. 6. The list is presented below.

1. steepest ascent hill climbing (SAHC);
2. first-choice hill climbing (FCHC);
3. first-choice hill climbing with variables-based jump (FCHCVJ);
4. tabu search (TS);
5. tabu search with activity-based escape (TSAE);
6. simulated annealing (SA);
7. (1+1) evolutionary algorithm ((1+1)-EA).
8. genetic algorithm (GA);

Some features of the considered algorithms are outlined in Table 1. Note that
all three objective functions are extremely costly, that is why in almost all em-
ployed optimization algorithms (except SAHC and FCHC) a tabu list is used to
prevent calculating an objective function’s value at any point more than once. If
not mentioned otherwise, it is implied that the tabu list stores all processed points.
In trajectory-based algorithms a successor solution is sought in a neighborhood of
a current solution. Escaping local minima means that a trajectory-based algorithm
uses a specific heuristic to move out of points with neighborhoods in which it could
not improve a function’s value.

Table 1: Some features of the considered optimization algorithms.

Algorithm Stochastic Tabu lists Trajectory-based Escaping local minima
SAHC No No Yes No
FCHC Yes No Yes No
FCHCVJ Yes Yes Yes Yes
TS No Yes Yes Yes
TSAE No Yes Yes Yes
SA Yes Yes Yes Yes
(1+1)-EA Yes Yes No -
GA Yes Yes No -

Since the functions (13), (14), and (17) are pseudo-Boolean, it means that they
take a Boolean vector _ = (_1, . . . , _=) as an input. Such a vector is considered

20 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

as a point in the search space {0, 1}=. Thus, it is quite natural to operate with
the Hamming distance [30] between points to form a neighborhood. To be more
specific, we assume that a neighborhood of a point _ contains all points that are at
Hamming distance at most � from _. Hereinafter we refer to a point for which an
objective function value has already been calculated as processed point. Similarly, a
neighborhood is called processed if all its points are processed, otherwise it is called
unprocessed.

Let us describe the mentioned optimization algorithms in more detail. In the
corresponding pseudocodes, 6 stands for an objective function ((13), (14), or (17)),
614BC and _14BC – for the best known value (BKV) of the objective function and the
corresponding point, respectively. Every algorithm is given a starting point _BC0AC . It
goes without saying that several parameters are common for all functions: CNF �,
SAT solving algorithmA, random sample size # (see Sect. 3). Some of the objective
functions require additional parameters, but for brevity we do not mention them in
pseudocodes. Instead, it is implied that all the required ones are given.

The steepest ascent hill climbing algorithm (see, e.g., [59]) calculates objective
function values for all points from a current neighborhood and chooses the best
candidate from them (in our case – the one with the lowest objective function value).
If the best candidate is better than the current _14BC , then both _14BC and 614BC are
updated. If all points from the neighborhood are worse than the current _14BC , then
a local minimum is reached and the algorithm stops. The pseudocode is shown in
Alg. 1. For a given point _, the function getRandOrdNeighb(_,H) returns the list
of randomly ordered points that are at Hamming distance at most � from _. Note,
that for this algorithm any ordering can be used, but random ordering is required for
the first-choice hill climbing that is described further.

Input: Starting point _BC0AC , Hamming distance �, time limit C
1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2 repeat
3 BestValueUpdated← false
4 CurNeigh← getRandOrdNeighb(_14BC , �)
5 for each _ in CurNeigh do
6 NewFuncValue← 6(_)
7 if NewFuncValue < 614BC then
8 〈_14BC , 614BC 〉 ← 〈_,NewFuncValue〉
9 BestValueUpdated← true

10 until timeExceeded(t) or not BestValueUpdated
11 return 〈_14BC , 614BC 〉

Algorithm 1: Steepest ascent hill climbing
In opposite to steepest ascent hill climbing, the first-choice hill climbing algorithm

(see, e.g., [59]) immediately stops processing the current neighborhood as soon as
_14BC is updated. Thus the pseudocode of first-choice hill climbing can be easily
made by adding the line Break after line number 9 in Alg. 1. Since both steepest
ascent hill climbing and first-choice hill climbing do not have heuristics for escaping
local minima, they are not used in experiments described in Sect. 6. However, the

Finding Effective SAT Partitionings Via Black-box Optimization 21

next four algorithms that we actually use for this purpose are based on either SAHC
or FCHC.

Input: Starting point _BC0AC , Hamming distance �, time limit C
1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2 _24=C4A ← _BC0AC
3 TabuList← {_BC0AC }
4 repeat
5 NonTabuPoints← getNonTabuNeighbors(_24=C4A , �, TabuList)
6 if NonTabuPoints = ∅ then
7 Break
8 620=3830C4 ←∞
9 for each _ in NonTabuPoints do
10 NewFuncValue← 6(_)
11 if NewFuncValue < 620=3830C4 then
12 〈_20=3830C4, 620=3830C4〉 ← 〈_,NewFuncValue〉
13 if 620=3830C4 < 614BC then
14 〈_14BC , 614BC 〉 ← 〈_20=3830C4, 620=3830C4〉
15 updateTabuList(_20=3830C4, TabuList)
16 _24=C4A ← _20=3830C4

17 until timeExceeded(t)
18 return 〈_14BC , 614BC 〉

Algorithm 2: The tabu search algorithm
Tabu search was proposed in [26]. We implemented a tabu search algorithm on

the basis of steepest ascent hill climbing. A tabu list is used where the last 1000
best points from the processed neighborhoods are stored. In opposite to first-choice
hill climbing and steepest ascent hill climbing, if a local minimum is reached, the
algorithm does not stop. Instead, the best point from the neighborhood is chosen,
and the processing of its neighborhood is started. Alg. 2 shows the corresponding
pseudocode. The function getNonTabuNeighbors(_,H,TabuList) returns ran-
domly ordered points from the neighborhood of _ with Hamming distance at most �
that are not in the tabu list. The function updateTabuList() adds a given point to
the top of the tabu list. If the tabu list is full, the last point is removed from it before
adding a new one. It means that repeated calculations are possible in this algorithm.
By _20=3830C4 and 620=3830C4 we denote the best non-tabu point from the current
neighborhood and the objective function value for it, respectively.

Tabu search with activity-based escape was proposed in [62]. Unlike the tabu
search algorithm described above, it uses another heuristic for escaping localminima,
and stores all processed points. More specifically, the information about processed
points is stored in two tabu lists !1 and !2. !1 contains processed points with
processed neighborhoods, while !2 contains processed points with unprocessed
neighborhoods. In particular, each point in !2 is stored along with a Boolean vector
that specifies which points from the corresponding neighborhood have not been
processed yet. The pseudocode is presented in Alg. 3. The list of points that have
not been processed so far according to both tabu lists is formed by the function
getNonTabuNeighbors2. The function markPointInTabuLists(_, !1, !2) adds

22 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

the point _ to !2 and then marks _ as processed in all neighborhoods of points from
!2 that contain _. If as a result the neighborhood of some point _ becomes processed,
the point is removed from !2 and is added to !1. If all points in the neighborhood
of _24=C4A have been processed but 614BC has not been improved, then some point
from !2 is chosen as _24=C4A to escape the reached local minimum. It is done via
the function getNewCenter(!2) that chooses from !2 a point with the largest total
conflict activity of Boolean variables from the corresponding decomposition set.
This activity is taken from a CDCL-based [46] SAT solving algorithm A.

Input: Starting point _BC0AC , Hamming distance �, time limit C
1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2 _24=C4A ← _BC0AC
3 !1 ← ∅
4 !2 ← {_BC0AC }
5 repeat
6 BestValueUpdated← false
7 NonTabuPoints← getNonTabuNeighbors2(_24=C4A , �, !1, !2)
8 for each _ in NonTabuPoints do
9 NewFuncValue← 6(_)

10 markPointInTabuLists(_, !1, !2) // update tabu lists
11 if NewFuncValue < 614BC then
12 〈_14BC , 614BC 〉 ← 〈_,NewFuncValue〉
13 BestValueUpdated← true
14 if BestValueUpdated then
15 _24=C4A ← _14BC
16 else
17 _24=C4A ← getNewCenter(!2)

18 until timeExceeded(t)
19 return 〈_14BC , 614BC 〉

Algorithm 3: Tabu search with activity-based escape
First-choice hill climbingwith variables-based jumpwas proposed in [40, 74]. It is

a first-choice hill climbing improved by a memory-based heuristic for escaping local
minima. This heuristic employs two arrays of counters:*1, |*1 | = = and*2, |*2 | =
=. All elements of both arrays are initialized with zeros. If an objective function is
calculated in a point_, then for all 8 such that_8 = 1 the counter*1

8
is increased by one.

The second vector of counters is updated in the samemanner, but only for such points
in which 614BC has been updated. If a local minimum is reached in a neighborhood of
a current _14BC , then a new starting point is constructed by changing 2< elements of
_14BC from 0 to 1. The elements to flip are picked as follows:< of them correspond to
< lowest values in*1 and the other < to the < highest values in*2. The motivation
here is tomove to a point that simultaneously contains the variables that often resulted
in an improvement of function’s value and the variables that were rarely added in
the process of the search so far to balance the exploitation and exploration. In all
experiments described in Sect. 6, < was equal to 4. The pseudocode is shown in
Alg. 4. Functions updateFirstCounter() and updateSecondCounter() update

Finding Effective SAT Partitionings Via Black-box Optimization 23

*1 and*2, respectively. The function getJumpPoint(_,m) constructs a new point
by changing 2< elements of a given point _ from 0 to 1 as it was described above.

Input: Starting point _BC0AC , escape parameter <, Hamming distance �,
time limit C

1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2 _24=C4A ← _BC0AC
3 TabuList← {_BC0AC }
4 *1 = *2 = 0 // initialize with zero vectors
5 repeat
6 NonTabuPoints← getNonTabuNeighbors(_24=C4A , �, TabuList)
7 BestValueUpdated← false
8 for each _ in NonTabuPoints do
9 NewFuncValue← 6(_)

10 addPointTabuList(_, TabuList)
11 updateFirstCounter(_,*1)
12 if NewFuncValue < 614BC then
13 〈_14BC , 614BC 〉 ← 〈_,NewFuncValue〉
14 updateSecondCounter(_14BC ,*2)
15 BestValueUpdated← true
16 Break

17 if BestValueUpdated = true then
18 _24=C4A ← _14BC
19 else
20 _24=C4A ← getJumpPoint(_14BC , <)
21 until timeExceeded(t)
22 return 〈_14BC , 614BC 〉

Algorithm 4: First-choice hill climbing with variables-based jump
The simulated annealing algorithm was proposed in [39]. Below we describe its

variant from [62] aimed at minimizing objective functions of the considered type.
It is based on steepest ascent hill climbing, A point _ from a current neighborhood
becomes _24=C4A with the probability

%A{_→ _24=C4A } =
{

1, 8 5 6(_) < 6(_14BC)
exp(− 6 (_)−6 (_14BC))

)
), 8 5 6(_) ≥ 6(_14BC)

(18)

Here) corresponds to the “temperature of the environment” [39]. First,) is assigned
a large value)0. At each calculation of an objective function,) is decreased:) = & ·) ,
where & ∈ (0, 1). Algorithm stops when) drops below a threshold value)CℎA4Bℎ .
In [62] the following values were used:)0 =

6 (_BC0AC)
10 , & = 0.9,)CℎA4Bℎ = 20.

The pseudocode is shown in Alg. 5. The function pointAccepted(6(_), 614BC ,))
employs formula (18) to test if 6 becomes 614BC .

24 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

Input: Starting point _BC0AC , Hamming distance �, time limit C, temperature
decrease parameter &, temperature threshold)CℎA4Bℎ

1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2) =

6 (_BC0AC)
10

3 TabuList← {_BC0AC }
4 repeat
5 NonTabuPoints← getNonTabuNeighbors(_14BC , �, TabuList)
6 if NonTabuPoints = ∅ then
7 Break
8 for each _ in NonTabuPoints do
9 NewFuncValue← 6(_)

10 addPointTabuList(_, TabuList)
11 if pointAccepted (NewFuncValue, 614BC ,)) then
12 〈_14BC , 614BC 〉 ← 〈_,NewFuncValue〉
13) =) · &
14 until timeExceeded(t) or) <)CℎA4Bℎ
15 return 〈_14BC , 614BC 〉

Algorithm 5: The simulated annealing algorithm
The (1+1) evolutionary algorithm is described, e.g., in [52]. Below we employ

this algorithm in the form that was used in [55] for minimization of the objective
function (15). Unlike the original algorithm, it starts from a given point. Alg. 6 shows
the pseudocode. The function mutate(_, 1

=
) flips independently each element of a

given point _ (which in turn is a Boolean vector of size =) with probability 1
=
. This

function is run until a non-tabu point is obtained.
Input: Starting point _BC0AC , time limit C

1 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
2 TabuList← {_BC0AC }
3 repeat
4 repeat
5 _ 5 ;8 ??43 ← mutate(_14BC , 1

=
)

6 until _ 5 ;8 ??43 not in TabuList
7 NewFuncValue← 6(_ 5 ;8 ??43)
8 addPointTabuList(_, TabuList)
9 if NewFuncValue < 614BC then
10 〈_14BC , 614BC 〉 ← 〈_ 5 ;8 ??43 ,NewFuncValue〉
11 until timeExceeded(t)
12 return 〈_14BC , 614BC 〉

Algorithm 6: The (1+1) evolutionary algorithm
Finally, we present a variant of genetic algorithm proposed in [55]. Each point

_ ∈ {0, 1}= is considered as an individual (see, e.g., [45]), the fitness ofwhich is deter-
mined by the value of an objective function in the corresponding point. Alg. 7 shows
the pseudocode. The sizes of all populations are fixed to . The starting population is
initialized via the function initPopulation(_BC0AC ,) that constructs replicas
of _BC0AC . The key function of the genetic algorithm is the one used to move from the

Finding Effective SAT Partitionings Via Black-box Optimization 25

current population to the next. InAlg. 7 it is getNextPopulation(%2DAA , �, ", ').
Assume that %2DAA = {�1, . . . , � } and %=4GC , |%=4GC | = are a current and a new
population, respectively. %=4GC is formed by � + " + ' = points that are chosen
as follows. First � are chosen as the top � individuals with the best values of the
objective function from %2DAA . It is done in accordance with the so-called elitism
principle (see, e.g., [45]). Next, we compute auxiliary values

? 9 =

1
6 (� 9)∑
D=1

1
6 (�D)

, 9 = 1, . . . ,

and use them to form probability distribution �2DAA = {?1, . . . , ? }. Then "

individuals are chosen randomly from %2DAA according to �2DAA , undergo standard
(1+1)-EAmutation and go into %=4GC . Finally, ' pairs of individuals are chosen from
%2DAA according to �2DAA to perform the standard two-point crossover. The result of
crossover goes to %=4GC . The situation when the algorithm fails to improve the BKV
during one generation is called stagnation. If the number of stagnations exceeds
a given limit <0G_BC06, then the algorithm restarts from the initial population
based on replicas of _BC0AC . Note, that in this case the tabu list is not cleared.
In [55], <0G_BC06 was varied from 100 to 300, while the constants were set to
 = 10, � = 2, " = ' = 4.

Input: Starting point _BC0AC , time limit C, evolution parameters
 , �, ", ', <0G_BC06

1 %← initPopulation(_BC0AC ,)
2 〈_14BC , 614BC 〉 ← 〈_BC0AC , 6(_BC0AC)〉
3 TabuList← {_BC0AC }
4 BC06_=D< ← 0
5 repeat
6 BC06_=D< ← BC06_=D< + 1
7 for each _ in % do
8 if _ not in TabuList then
9 NewFuncValue← 6(_)

10 addPointTabuList(_, TabuList)
11 if NewFuncValue < 614BC then
12 〈_14BC , 614BC 〉 ← 〈_,NewFuncValue〉
13 BC06_=D< ← 0
14 if BC06_=D< < <0G_BC06 then
15 %← getNextPopulation(%, �, ", ')
16 else
17 BC06_=D< ← 0
18 %← initPopulation(_BC0AC ,)
19 until timeExceeded(t)
20 return 〈_14BC , 614BC 〉

Algorithm 7: The genetic algorithm

26 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

6 Experimental Results

In this section we apply the optimization algorithms described in the previous section
to minimization of objective functions introduced in the chapter. As benchmarks we
use the problems of finding effective SAT partitionings for several instances of SAT-
based cryptanalysis of certain symmetric-key algorithms. In particular, each found
BKV corresponds to a guess-and-determine attack on the considered symmetric-key
algorithm (see Sect. 3.1). Belowwe first briefly describe the considered cryptanalysis
problems, then say a few words about the implementations of objective functions
employed in experiments and finally present the results of experimental evaluation.

6.1 Considered Problems

We consider SAT-based cryptanalysis of several symmetric-key cryptographic algo-
rithms listed in Table 2. In particular, we consider both keystream generators and
block ciphers. The keystream generators include: the A5/1 generator (see, e.g., [7])
that is still being used to encrypt traffic in the GSM standard in some countries; the
alternating step generator (ASG) characterized by high encryption speed and good
statistical properties [28]; the Trivium [10] and Grain_v1 [31] generators that were
the finalists of the eSTREAM project aimed at identifying new fast and resistant
stream ciphers. The block ciphers include the 2.5-round version of the Advanced
Encryption Standard (AES [18]) with 128-bit key, the full (10-round) version of
which is one of the most resistant block ciphers used today. Following the notation
of [9], “x.5r” means x full rounds and the final round. Another block cipher we study
is the 8-round version of the Magma block cipher (also known as GOST 28147-89,
see, e.g., [16]). This very weakened version of Magma was studied by SAT-based
cryptanalysis in [17, 2]. The full (32-round) version of Magma was used in USSR
and Russian cryptographic standards from 1989 to 2019.

Recall that the known plaintext scenario [50] in application to a keystream gen-
erator means that the attacker has access to a keystream fragment of size < and tries
to find the registers’ state of size = that produced this fragment. In some cases, the
registers’ state coincides with the secret key, in other cases it does not, but the secret
key can be efficiently computed based on the corresponding state (see, e.g., [48]).
Block ciphers construct one block of a ciphertext of a fixed size based on a fixed
secret key and one block of a plaintext (as a rule, of the same size as a block of a
ciphertext). Known plaintext scenario for block ciphers [50] implies that the attacker
has access to known plaintexts and the corresponding ciphertexts, and tries to find
the secret key.

It should be noted that the considered objective functions were applied to SAT-
based cryptanalysis of several other keystream generators: Bivium (a simplified
version of Trivium) and Grain_v0 [62]; Rabbit and Mickey [75]; Salsa20 [74];
Shrinking and Self-shrinking [72]; Bivium and two other simplified versions of

Finding Effective SAT Partitionings Via Black-box Optimization 27

Table 2: Features of studied cryptographic algorithms. Sizes are given in bits.

Keystream generators
Algorithm Registers’ state Keystream
A5/1 64 114
AES-96 96 112
Trivium 288 300
Grain_v1 160 200

Block ciphers
Algorithm Secret key Plaintext
AES-128-2.5r 128 384
Magma-8r 256 786

Trivium (Trivium64 and Trivium96) [54]. For brevity, in this study none of them is
considered.

All considered cryptanalysis problems were reduced to SAT via the Transalg
tool [61]. Note that the set - 8= that is given to some optimization algorithms as
the starting point is constructed differently for keystream generators and for block
ciphers. More specifically, for keystream generators - 8= consists of the Boolean
variables that encode starting registers’ state that has to be found. Recall that a block
cipher takes as an input a pair (secret key, plaintext). Let (1 be a Boolean circuit
that specifies a function of the kind ℎ : {0, 1}=+< → {0, 1}< that corresponds to the
considered block cipher. This circuit has =+< inputs, where = is the secret key size in
bits, and < – analyzed plaintext size in bits (i.e. < can correspond to several known
plaintexts). Note, that in the known plaintext scenario the corresponding plaintext is
known. Then, following [61] it can be shown that for this case one can efficiently
transit from the circuit (1 to a circuit (2 that has = inputs and < outputs. The circuit
(2 specifies some function of the kind (2). If an inversion problem is solved for this
function, then the corresponding secret key is found. In this case in the template
CNF constructed for (2 the set - 8= contains Boolean variables that encode a secret
key.

As it was already stated in Sect. 4, in each studied SAT-based cryptanalysis
problem - 8= is a SUPBS for the corresponding SAT instance. This allows us to
significantly reduce the search space of the optimization problem. Thus, in the
computational experiments the objective functions are minimized over the search
spaces of the following sizes: 264 for A5/1; 296 for ASG-96; 2288 for Trivium; 2160

for Grain_v1; 2128 for AES-128-2.5r; 2256 for Magma-8r. Therefore, we have 6 hard
pseudo-Boolean black-box optimization problems.

28 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

6.2 Implementations of Objective Functions

The objective functions (13), (14), and (17) have been implemented in three software
tools: PDSAT1 [62], ALIAS2 [40], and CryptoEV3 [55]. They employ different
combinations of the objective functions and the algorithms for their minimization.
Table 3 shows the optimization algorithms (see Sect. 5) implemented in these tools.

Table 3: Information on software tools implementing the proposed approach.

Tool Functions Algorithms
PDSAT (13), (14), (17) TSAE, SA
ALIAS (17) FCHCVJ, TS, (1+1)-EA
CryptoEV (13),(14) (1+1)-EA, GA

The PDSAT tool is implemented in C++, the other two use Python. All these
tools use CDCL solvers [46] to solve SAT instances from a SAT partitioning. In the
following subsections, the results of all experiments have been obtained using one
of the three tools mentioned in Table 3.

6.3 Finding Effective SAT Partitionings

The experiments aimed atminimization of the objective functions (13), (14), and (17)
on considered benchmarks were performed in different papers at different times. For
these reasons, we are not able to provide the results of each optimization algorithm for
minimization of each problem. Thus we will limit the presentation to only published
results accompanied by the corresponding citations.

Recall that for each problem all optimization algorithms were given the corre-
sponding Boolean representation of - 8= as a starting point _BC0AC . For instance,
for A5/1 - 8= = {G1, G2, . . . , G64}, so _BC0AC = (1, 1, . . . , 1), |_BC0AC | = 64. Since all
studied objective functions are extremely costly, in all trajectory-based optimization
algorithms the Hamming distance � was set to 1.

The experiments were conducted on the computing cluster “Academician V.M.
Matrosov”4. This cluster has nodes of two types – the first one is equipped with 2 ×
16-core AMDOpteron 6276 CPUs (32 CPU cores in total) and 64 Gb of RAM, while
the second has 2 × 18-core Intel Xeon E5-2695 CPUs and 128 Gb of RAM. Table 4
shows parameters of the conducted experiments. Here “Func.” stands for objective
function and “Cores” for the number of CPU cores. Note, that in CryptoEv the

1 https://github.com/Nauchnik/pdsat
2 https://github.com/Nauchnik/alias
3 https://github.com/lytr777/CryptoEv
4 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru

Finding Effective SAT Partitionings Via Black-box Optimization 29

sample size was varied from 10 to 800 [55], while in all other cases it was constant.
In the case of ALIAS, three runs of each optimization algorithm were performed,
then the best result out of them was chosen. In other cases, there was only one run.

Table 4: Parameters of the performed experiments.

Problem Func. Source Tool Node type Cores Time limit Sample size (#)
A5/1 (13) [62] PDSAT AMD 160 24 hours 10 000

ASG-96 (14) [55] CryptoEv Intel 180 24 hours from 10 to 800
(17) [73] PDSAT Intel 360 12 hours 1 000

Trivium (14) [66] PDSAT Intel 360 24 hours 1 000
(17) [75] ALIAS Intel 36 3 × 24 hours 100

Grain_v1 (17) [75] ALIAS Intel 36 3 × 24 hours 100
AES-128-2.5 (14) [66] PDSAT Intel 360 24 hours 1 000
Magma-8r (14) [66] PDSAT Intel 360 24 hours 1 000

Table 5 shows optimization algorithms employed for every pair (problem, objec-
tive function), as well as the corresponding BKVs. Fig. 1 shows how the objective
function (14) was minimized via (1+1)-EA and GA on ASG-96, while Fig. 2 shows
how (17) was minimized via TS, FCHCVJ, and (1+1)-EA on Trivium and Grain_v1.
In all these figures, x-axis corresponds to the time in seconds elapsed since the
algorithm start, while y-axis corresponds to the objective function’s values for _14BC
in logarithmic scale.

Table 5: Optimization algorithms (and the corresponding found BKVs) applied to
each pair (problem, objective function). “-” means that the problem has not been
analyzed via the corresponding objective function. For each problem the BKV (and
the corresponding algorithm) among all applied objective functions is marked with
bold.

Problem BKV for (13) BKV for (14) BKV for (17)

A5/1 4.64e+08 TSAE [62] - - - -4.78e+08 SA [62]

ASG-96 - - 3.72e+06 GA [55] 1.06e+06 TSAE [73]6.76e+06 (1+1)-EA [55]

Trivium - - 2.04e+41 TSAE [66]
4.46e+43 TS [75]
2.46e+41 FCHCVJ [75]
7.15e+40 (1+1)-EA [75]

Grain_v1 - - - -
2.85e+30 TS [75]
4.07e+30 FCHCVJ [75]
4.69e+30 (1+1)-EA [75]

AES-128-2.5r - - 1.45e+15 TSAE [66] - -
Magma-8r - - 3.55e+22 TSAE [66] - -

It is not possible to directly compare all employed optimization algorithms since
their different combinations were applied to different problems. However, some

30 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

 1x10
10

 1x10
15

 1x10
20

 1x10
25

 0 10000 20000 30000 40000 50000 60000

(1+1)−EA
GA

Fig. 1: Minimization of the objective function (14) on ASG-96 by (1+1)-EA and
GA.

 1x10
30

 1x10
32

 1x10
34

 1x10
36

 1x10
38

 1x10
40

 1x10
42

 1x10
44

 1x10
46

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

(1+1)−EA
FCHCVJ

TS

(a) Grain_v1

 1x10
40

 1x10
45

 1x10
50

 1x10
55

 1x10
60

 1x10
65

 1x10
70

 1x10
75

 1x10
80

 1x10
85

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

(1+1)−EA
FCHCVJ

TS

(b) Trivium

Fig. 2: Minimization of the objective function (17) on Trivium and Grain_v1 by
(1+1)-EA, FCHCVJ, and TS.

conclusions can be made. From the presented results it follows that the algorithms’
diversity makes sense for the problems of the considered type. When minimizing the
objective function (17) on Grain_v1, the TS, (1+1)-EA, and FCHCVJ algorithms
showed comparable results, but TS outperformed its competitors. OnTrivium, (1+1)-
EA is slightly better than FCHCVJ, while TS showed extremely bad results. The
main reason is that TS thoroughly traverses neighborhoods (see Sect. 5), and in the
case of Trivium the neighborhoods are quite large. When minimizing the objective
function (14) on ASG-96, GA slightly outperformed (1+1)-EA. On A5/1, TSAE
showed better results than SA when minimizing the objective function (13). As for
AES-128-2.5r and Magma-8r, only TSAE was employed for each of them.

Finding Effective SAT Partitionings Via Black-box Optimization 31

6.4 Solving Hard SAT Instances via Found Partitionings

Tomake sure that the constructed runtime estimations are accurate, we solved several
SAT-based cryptanalysis instances via the constructed SAT partitionings. Recall that
each SAT partitioning is constructed using a decomposition set that is defined by
some _ (see Sect. 3). We used _14BC found for A5/1 and ASG-96 (see the best results
in Table 5) to implement SAT-based guess-and-determine attacks on these keystream
generators. This choice was motivated by the fact that they correspond to the smallest
runtime estimations among all presented in Table 5.

For the first time SAT-based cryptanalysis of A5/1 was considered in [65]. In that
paper, the decomposition set consisting of 31 variables (out of 64) was constructed
manually based on the analysis of A5/1 algorithmic features. Using this partitioning,
10 SAT-based cryptanalysis instances for A5/1 were solved [62] in the volunteer
computing project SAT@home [56]. Also, in SAT@home the same 10 instances
were solved by the decomposition set found via TSAEwhenminimizing the objective
function (13) [62]. Note, that this decomposition set consists of 32 variables. In both
experiments the average runtime on simplified instances from the corresponding
SAT partitionings was comparable.

As for ASG-96, 20 SAT-based cryptanalysis instances were solved on the com-
puting cluster “Academician V.M. Matrosov” via the decomposition set found by
the TSAE optimization algorithm when minimizing (17) [73]. The decomposition
set consisted of 30 variables (out of 96). Is should be noted, that the corresponding
SAT partitioning significantly outperformed by average runtime the one constructed
manually [73].

According to the best obtained estimations, Trivium, Grain_v1, AES-128-2.5r,
and Magma-8r are way too hard for processing the corresponding SAT partitionings
in reasonable time. Following [62, 61], we studied weakened SAT-based cryptanal-
ysis problems for Trivium and Grain_v1 by assigning correct values to a portion
of variables from - 8= [75]. In particular, we assigned values to : (out of =) last
variables from - 8=. In such a weakened variant, the first =− : variables from - 8= are
unknown, thus, _14BC is picked from the set of all possible subsets of {G1, . . . , G=−: }.
The following weakened variants were considered: : = 96 for Grain_v1 and : = 134
for Trivium, so _14BC was picked from subsets of {G1, . . . , G64} and {G1, . . . , G154},
respectively. (1+1)-EA was run on both weakened problems for 1 hour on one clus-
ter node. As a result, for Grain_v1 (Trivium) _14BC consisting of 22 (26) variables
was found. By processing the corresponding SAT partitionings, for both Grain_v1
and Trivium three randomly generated weakened SAT-based cryptanalysis problems
were successfully solved on one cluster node.

It turned out, that for each solved problem the runtime estimation is accurate since
it is quite close to the corresponding real solving time.

32 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

7 Conclusion

In this chapter we discussed how the black-box optimization methods can be applied
to finding good partitionings for hard instances of the Boolean satisfiability problem.
We narrow this area to the cases when a special partitioning method can be applied,
since it allows one to formulate the problem of finding effective partitionings as
a black-box optimization problem. The presented approach works quite well with
cryptanalysis problems in SAT form, and sometimes leads to state-of-the-art results.
In contrast to the majority of cryptographic attacks that require in-depth analysis of
the underlying cipher and a lot of manual tinkering with peculiarities of a particular
construction, the approach presented in the chapter is completely automatic. We
give a problem formulation to a black-box optimization algorithm, launch it and
wait while it finds a minimum. While it is by no means a silver bullet, and the
approach has some pitfalls, the results of experiments appear to be quite promising.
In combination with the relevant research in neighboring areas, the presented results
make us hope that the potential of SAT in the context of solving hard combinatorial
problems is far from being exhausted.

Acknowledgements The research was funded by Russian Science Foundation (project No. 16-11-
10046). Stepan Kochemazov is additionally supported by the Council for Grants of the President
of the Russian Federation (stipend SP-2017.2019.5).

References

1. Audet, C., Hare,W.:Derivative-Free andBlackboxOptimization. Springer Series inOperations
Research and Financial Engineering. Springer International Publishing, Berlin (2017). DOI
10.1007/978-3-319-68913-5

2. Babenko, L.K., Maro, E.A., Anikeev,M.V.: Application of algebraic cryptanalysis toMAGMA
and PRESENT block encryption standards. In: Proceedings of IEEE 11th International Con-
ference on Application of Information and Communication Technologies (AICT), pp. 1–7
(2017). DOI 10.1109/ICAICT.2017.8686954

3. Balyo, T., Sinz, C.: Parallel satisfiability. In: Y. Hamadi, L. Sais (eds.) Handbook of Parallel
Constraint Reasoning, pp. 3–29. Springer (2018). DOI 10.1007/978-3-319-63516-3_1

4. Bard, G.V.: Algebraic Cryptanalysis, 1st edn. Springer Publishing Company, Incorporated
(2009)

5. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions
of global constraints. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence - IJCAI’09, pp. 412–418 (2009)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

7. Biryukov, A., Shamir, A., Wagner, D.A.: Real time cryptanalysis of A5/1 on a PC. In:
B. Schneier (ed.) Fast Software Encryption, 7th International Workshop, FSE 2000, Lecture
Notes in Computer Science, vol. 1978, pp. 1–18. Springer (2000). DOI 10.1007/3-540-44706-
7_1

8. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123(1-3), 155–
225 (2002)

Finding Effective SAT Partitionings Via Black-box Optimization 33

9. Bouillaguet, C., Derbez, P., Fouque, P.: Automatic search of attacks on round-reduced AES
and applications. In: P. Rogaway (ed.) Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Lecture Notes in Computer Science, vol. 6841, pp. 169–187. Springer
(2011). DOI 10.1007/978-3-642-22792-9_10

10. Cannière, C.D., Preneel, B.: Trivium. In: M.J.B. Robshaw, O. Billet (eds.) New Stream Cipher
Designs - The eSTREAMFinalists,LectureNotes inComputer Science, vol. 4986, pp. 244–266.
Springer (2008). DOI 10.1007/978-3-540-68351-3_18. URL https://doi.org/10.1007/978-3-
540-68351-3_18

11. Carter, K., Foltzer, A., Hendrix, J., Huffman, B., Tomb, A.: SAW: the software analysis
workbench. In: J. Boleng, S.T. Taft (eds.) Proceedings of the 2013 ACM SIGAda annual
conference on High integrity language technology, HILT, pp. 15–18. ACM (2013). DOI
10.1145/2527269.2527277

12. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving, 1st edn. Aca-
demic Press, Inc., USA (1997)

13. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: K. Jensen,
A. Podelski (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Lecture Notes in Computer Science, vol. 2988, pp.
168–176. Springer (2004). DOI 10.1007/978-3-540-24730-2_15

14. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, pp. 151–158 (1971)

15. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: A survey. In:
Satisfiability Problem: Theory and Applications,DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 35, pp. 1–18 (1996)

16. Courtois, N.T.: Algebraic complexity reduction and cryptanalysis of GOST. IACR Cryptol.
ePrint Arch. 2011, 626 (2011). URL http://eprint.iacr.org/2011/626

17. Courtois, N.T., Gawinecki, J.A., Song, G.: Contradiction immunity and guess-then-determine
attacks on GOST. Tatra Mt. Math. Publ. 53(1), 2–13 (2012)

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer (2002). DOI 10.1007/978-3-662-04722-4

19. Dowling,W.F.,Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional
horn formulae. J. Log. Program. 1(3), 267–284 (1984)

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tacchella (eds.)
Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
Selected Revised Papers, Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003). DOI 10.1007/978-3-540-24605-3_37

21. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4), 543–560 (2003)

22. Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: H.K. Büning,
X. Zhao (eds.) Theory and Applications of Satisfiability Testing - SAT 2008, 11th International
Conference, SAT 2008, Lecture Notes in Computer Science, vol. 4996, pp. 63–76. Springer
(2008). DOI 10.1007/978-3-540-79719-7_7

23. Feller, W.: An introduction to probability theory and its applications, Volume II. John Wiley
& Sons Inc., New York, NY, USA (1971)

24. Franco, J., Martin, J.: A history of satisfiability. In: A. Biere, M. Heule, H. van Maaren,
T. Walsh (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 3–74. IOS Press (2009). DOI 10.3233/978-1-58603-929-5-3. URL
https://doi.org/10.3233/978-1-58603-929-5-3

25. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman New York (1979)
26. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers

& OR 13(5), 533–549 (1986)
27. Gomes, C.P., Sabharwal, A.: Exploiting runtime variation in complete solvers. In: A. Biere,

M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, vol. 185, pp. 271–288. IOS Press (2009). DOI 10.3233/978-1-
58603-929-5-271. URL https://doi.org/10.3233/978-1-58603-929-5-271

34 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

28. Günther, C.G.: Alternating step generators controlled by de Bruijn sequences. In: D. Chaum,
W.L. Price (eds.) Advances in Cryptology - EUROCRYPT ’87, Workshop on the Theory and
Application of of Cryptographic Techniques, Lecture Notes in Computer Science, vol. 304, pp.
5–14. Springer (1987). DOI 10.1007/3-540-39118-5_2

29. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. J. Satisf. Boolean Model.
Comput. 6(4), 245–262 (2009)

30. Hamming, R.W.: Error detecting and error correcting codes. The Bell System Technical
Journal 29(2), 147–160 (1950). DOI 10.1002/j.1538-7305.1950.tb00463.x

31. Hell, M., Johansson, T.,Maximov, A.,Meier,W.: The grain family of stream ciphers. In:M.J.B.
Robshaw, O. Billet (eds.) New Stream Cipher Designs - The eSTREAM Finalists, Lecture
Notes in Computer Science, vol. 4986, pp. 179–190. Springer (2008). DOI 10.1007/978-3-
540-68351-3_14. URL https://doi.org/10.1007/978-3-540-68351-3_14

32. Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL SAT
solvers by lookaheads. In: K. Eder, J. Lourenço, O. Shehory (eds.) Hardware and Software:
Verification and Testing - 7th International Haifa Verification Conference, HVC 2011, Lecture
Notes in Computer Science, vol. 7261, pp. 50–65. Springer (2011). DOI 10.1007/978-3-642-
34188-5_8

33. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean
triples problem via cube-and-conquer. In: N. Creignou, D. Le Berre (eds.) Theory and Appli-
cations of Satisfiability Testing – SAT 2016, Lecture Notes in Computer Science, vol. 9710,
pp. 228–245 (2016)

34. Hyvärinen, A.E.J.: Grid Based Propositional Satisfiability Solving. Ph.D. thesis, Aalto Uni-
versity (2011)

35. Hyvärinen,A.E.J., Junttila, T.A.,Niemelä, I.: PartitioningSAT instances for distributed solving.
In: C.G. Fermüller, A. Voronkov (eds.) Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR-17, pp. 372–386 (2010). DOI 10.1007/978-3-642-16242-8_27

36. Janicic, P.: URSA: a system for uniform reduction to SAT. Log. Meth. Comput. Sci. 8(3), 1–39
(2012)

37. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom.
Reasoning 49(4), 583–619 (2012)

38. Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints
14(3), 325–356 (2009)

39. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

40. Kochemazov, S., Zaikin, O.: ALIAS: A modular tool for finding backdoors for SAT. In:
O. Beyersdorff, C.M. Wintersteiger (eds.) Theory and Applications of Satisfiability Testing -
21st International Conference, SAT 2018, Lecture Notes in Computer Science, vol. 10929, pp.
419–427. Springer (2018). DOI 10.1007/978-3-319-94144-8_25

41. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on
some classical and modern methods. SIAM review 45(3), 385–482 (2003)

42. Kroening, D.: Software verification. In: A. Biere, M. Heule, H. van Maaren, T. Walsh
(eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 505–532. IOS Press (2009). DOI 10.3233/978-1-58603-929-5-505. URL
https://doi.org/10.3233/978-1-58603-929-5-505

43. Lafitte, F.: Cryptosat: a tool for SAT-based cryptanalysis. IET Inf. Secur. 12(6), 463–474
(2018). DOI 10.1049/iet-ifs.2017.0176. URL https://doi.org/10.1049/iet-ifs.2017.0176

44. Levin, L.: Universal sequential search problems. Problems Inform. Transmission 9, 265–266
(1973)

45. Luke, S.: Essentials of Metaheuristics, second edn. Lulu (2013). Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/

46. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS Press (2009). DOI
10.3233/978-1-58603-929-5-131. URL https://doi.org/10.3233/978-1-58603-929-5-131

Finding Effective SAT Partitionings Via Black-box Optimization 35

47. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: R.A.
Rutenbar, R.H.J.M. Otten (eds.) Proceedings of the 1996 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 1996, pp. 220–227. IEEE Computer Society / ACM
(1996). DOI 10.1109/ICCAD.1996.569607

48. Maximov, A., Biryukov, A.: Two trivial attacks on trivium. In: C.M. Adams, A. Miri, M.J.
Wiener (eds.) Selected Areas in Cryptography, 14th International Workshop, SAC 2007, Re-
vised Selected Papers, Lecture Notes in Computer Science, vol. 4876, pp. 36–55. Springer
(2007). DOI 10.1007/978-3-540-77360-3_3

49. Mcdonald, C., Charnes, C., Pieprzyk, J.: Attacking BiviumwithMiniSat. Tech. Rep. 2007/040,
ECRYPT Stream Cipher Project (2007)

50. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography, 1st edn.
CRC Press, Inc., Boca Raton, FL, USA (1996)

51. Metropolis, N., Ulam, S.: The Monte Carlo Method. J. Amer. statistical assoc. 44(247),
335–341 (1949)

52. Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing. In: R. Män-
ner, B. Manderick (eds.) Parallel Problem Solving fromNature 2, PPSN-II, pp. 15–26. Elsevier
(1992)

53. Otpuschennikov, I.V., Semenov, A.A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding
cryptographic functions to SAT using TRANSALG system. In: G.A. Kaminka, M. Fox,
P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (eds.) ECAI 2016 -
22nd European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and
Applications, vol. 285, pp. 1594–1595. IOS Press (2016). DOI 10.3233/978-1-61499-672-9-
1594

54. Pavlenko, A., Buzdalov, M., Ulyantsev, V.: Fitness comparison by statistical testing in con-
struction of SAT-based guess-and-determine cryptographic attacks. In: A. Auger, T. Stützle
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019,
pp. 312–320 (2019). DOI 10.1145/3321707.3321847

55. Pavlenko, A., Semenov, A.A., Ulyantsev, V.: Evolutionary computation techniques for con-
structing SAT-based attacks in algebraic cryptanalysis. In: P. Kaufmann, P.A. Castillo (eds.)
Applications of Evolutionary Computation - 22nd International Conference, EvoApplications
2019, Lecture Notes in Computer Science, vol. 11454, pp. 237–253. Springer (2019). DOI
10.1007/978-3-030-16692-2_16

56. Posypkin, M., Semenov, A.A., Zaikin, O.: Using BOINC desktop grid to solve large scale SAT
problems. Computer Science (AGH) 13(1), 25–34 (2012)

57. Rios, L., Sahinidis, N.: Derivative-free optimization: A review of algorithms and comparison
of software implementations. J. Global Optim. 56, 1247–1293 (2013). DOI 10.1007/s10898-
012-9951-y

58. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965). DOI 10.1145/321250.321253

59. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall
(2009)

60. Semenov, A.: Decomposition representations of logical equations in problems of inversion of
discrete functions. J. Comput. Syst. Sci. Int. 48, 718–731 (2009)

61. Semenov, A., Otpuschennikov, I., Gribanova, I., Zaikin, O., Kochemazov, S.: Translation
of algorithmic descriptions of discrete functions to SAT with applications to cryptanalysis
problems. Log. Meth. Comput. Sci. 16 (2020)

62. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of boolean satis-
fiability problem with application to inversion of some cryptographic functions. SpringerPlus
5(1), 1–16 (2016)

63. Semenov, A.A., Zaikin, O.: Using Monte Carlo method for searching partitionings of hard
variants of Boolean satisfiability problem. In: V. Malyshkin (ed.) Parallel Computing Tech-
nologies - 13th International Conference, PaCT 2015, Lecture Notes in Computer Science, vol.
9251, pp. 222–230. Springer (2015). DOI 10.1007/978-3-319-21909-7_21

64. Semenov, A.A., Zaikin, O.: On the accuracy of statistical estimations of SAT partitionings
effectiveness in application to discrete function inversion problems. In: A.V. Kononov, I.A.

36 Alexander Semenov, Oleg Zaikin, and Stepan Kochemazov

Bykadorov, O.V. Khamisov, I.A. Davydov, P.A. Kononova (eds.) Supplementary Proceedings
of the 9th International Conference on Discrete Optimization and Operations Research and
Scientific School (DOOR 2016), CEUR Workshop Proceedings, vol. 1623, pp. 261–275.
CEUR-WS.org (2016)

65. Semenov, A.A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis of the
generator A5/1 in bnb-grid system. In: V. Malyshkin (ed.) Parallel Computing Technologies -
11th International Conference, PaCT 2011, Lecture Notes in Computer Science, vol. 6873, pp.
473–483. Springer (2011). DOI 10.1007/978-3-642-23178-0_43

66. Semenov, A.A., Zaikin, O., Otpuschennikov, I.V., Kochemazov, S., Ignatiev, A.: On crypto-
graphic attacks using backdoors for SAT. In: S.A. McIlraith, K.Q. Weinberger (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), pp.
6641–6648. AAAI Press (2018)

67. Soos, M.: Grain of Salt - an automated way to test stream ciphers through SAT solvers. In:
Tools’10: Proceedings of the Workshop on Tools for Cryptanalysis, pp. 131–144 (2010)

68. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
O. Kullmann (ed.) Theory and Applications of Satisfiability Testing - SAT 2009, 12th Inter-
national Conference, SAT 2009, Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009). DOI 10.1007/978-3-642-02777-2_24

69. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: A.O. Slisenko (ed.)
Studies in mathematics and mathematical logic, Part II, pp. 115—-125. Steklov Mathematical
Institute (1968)

70. Wegener, I.: The Complexity of Boolean Functions. John Wiley & Sons, Inc., USA (1987)
71. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: G. Gottlob,

T. Walsh (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, IJCAI-03, pp. 1173–1178. Morgan Kaufmann (2003)

72. Zaikin, O.: SAT-based cryptanalysis: From parallel computing to volunteer computing. In: V.V.
Voevodin, S. Sobolev (eds.) Supercomputing - 5th Russian Supercomputing Days, RuSCDays
2019,Communications inComputer and Information Science, vol. 1129, pp. 701–712. Springer
(2019). DOI 10.1007/978-3-030-36592-9_57

73. Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the alter-
nating step generator. In: P.Q. Nguyen, J. Zhou (eds.) Information Security - 20th International
Conference, ISC 2017, Lecture Notes in Computer Science, vol. 10599, pp. 21–38. Springer
(2017). DOI 10.1007/978-3-319-69659-1_2

74. Zaikin, O., Kochemazov, S.: Pseudo-boolean black-box optimization methods in the context
of divide-and-conquer approach to solving hard SAT instances. In: OPTIMA 2018 (Supple-
mentary Volume), pp. 76–87. DEStech Publications, Inc. (2018)

75. Zaikin, O., Kochemazov, S.: On black-box optimization in divide-and-conquer SAT solving.
Optimization Methods and Software pp. 1–25 (2019). DOI 10.1080/10556788.2019.1685993.
URL https://doi.org/10.1080/10556788.2019.1685993

76. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover and its
application to quasigroup problems. J. Symb. Comput. 21(4), 543–560 (1996). DOI
10.1006/jsco.1996.0030

