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Abstract. We consider a fundamental problem in the theory of branch-
ing heuristics for tree-based solvers, applicable e.g. to SAT, #SAT, CSP,
#CSP. Such tree-based solvers are used as the cubing-part in the Cube-
and-Conquer paradigm, and are thus of renewed interest for general
(#)SAT solving. These solvers build at least implicitly a branching (back-
tracking) tree, with the goal to minimise tree-size. The heuristics are
based on evaluating the progress made in a transition from an instance
F to some “simplified” F ′ by a distance d(F, F ′) (the bigger the more
progress). When a branching (F ′

1, . . . , F
′
k) is to be chosen for F , for each

possibility we consider its branching tuple t given by ti = d(F, F ′
i ),

project it to a single number π(t), and choose a branching with min-
imal π(t). This paper investigates the choices for π(t), in a theoretical
framework. The general theory is reviewed, together with the theoretical
result on the “canonical projection” π(t) = τ(t). Focusing then on binary
branchings (k = 2, t = (a, b)), we analyse the asymptotics of τ(a, b), and
reflect on the whole possible range of binary projections, arriving at first
practical possibilities for dynamic heuristics.

1 Introduction

Historically, look-ahead solvers ([9,16]) were the first successful complete SAT
solvers. With the rise of CDCL solvers ([17]), they went into oblivion, but the
successful Cube-and-Conquer (C&C) framework ([11]) creates some space for
them, since the efficient cubing (splitting) depends essentially on a good un-
derstanding of the branching process. Look-ahead solvers seem fundamentally
tree-based: this restricts their power, but enables perfect parallelisation and a
good understanding of the branching process (which needs to be aborted at some
point – that’s what C&C is doing, passing the task to the conquer-solver).

This paper starts a review of the fundamental theory of branching heuris-
tics for tree-based solvers, looking especially at the question of what makes a
“good projection”: the heuristical measurement comes up with numbers for each
branch, collected into a tuple of positive real numbers, a “branching tuple” t,
and the “projection” π(t) combines these numbers into a single number, which
is to be minimised (maximised) to find the best branching variable. Obviously

⋆ Supported by EPSRC grant EP/S015523/1.



2 O. Kullmann, O. Zaikin

the projection π is not unique, but what about the induced linear order? In the
chapter [16] of the Handbook of Satisfiability on Branching Heuristics, it is out-
lined that under the assumption, that the branching width k is arbitrarily large,
the induced linear ordering is indeed unique, given various natural axiomatic
requirements on the consistency of the ordering. We review and extend these
basic statements, and provide a proof for the existence and uniqueness of the
canonical ordering, in a simplified setting. The canonical ordering is given by the
canonical projection, the tau-function τ(t). Concentrating on binary branching,
as in (#)SAT, i.e., k = 2, we analyse this fundamental function, and show how
to (relatively) efficiently compute τ(a, b) (with high precision).

When only binary branchings are considered, then the uniqueness-result in
fact does not apply (at least not directly). In practice an “approximation” to
the tau-function is used, the product (i.e., (a, b) 7→ a · b, which is then to be
maximised), improving on the earlier use of the sum. When standardised to form
a (generalised) mean, then indeed τ lies in the interval given by the product-
and the sum-projections. We consider a range of possible alternative projections
in this interval. The final target is an understanding of the many parameters
involved, so that they can be chosen offline and/or optimised online to yield
efficient SAT solvers, based on proper dynamic heuristics.

Before we come to an outline of this paper, we review some recent literature.
The basic method of trees with branching tuples (called “metric trees” in this
paper), allowing the branching tuples to contain any positive real numbers, is a
fundamental tool in the field of exponential upper bounds for algorithms; see [7]
for an overview on that field, and see [8] for applications to bounds on circuit
size and #SAT. Practical applications include solving vehicle routing problems
([19]), and solving the minimum latency problem ([5]). In [4,2] a similar but
restricted branching theory was developed, only considering binary branchings
with natural numbers as distances (which in turn allows stronger tools from the
theory of recurrences), in the context of branch-and-bound algorithms for MIP.

An outline of the paper is as follows: Section 2 reviews the general theory,
and provides a proof of the fundamental Lemma 1 on the composition of branch-
ing tuples, missing from the literature. The basic Theorem 1 on estimating tree
sizes (known since [15]) gets a new proof, and we apply it to control the growth
of trees based upon a single branching tuple. Section 3 proves Theorem 2 on
the uniqueness of the order of branching tuples, given natural axioms. Corollary
1 gives a formulation suitable for restricted branching width (as used by SAT
solvers). Section 4 then studies the binary tau-function, obtaining sharp asymp-
totic bounds and a method for fast computation. Section 5 finally considers the
whole range of possibilities for binary projections, and we conclude in Section 6
by a summary and an outlook on future applications.

2 Branching tuples and distances

In this section we review the relevant elements of the theory of branching heuris-
tics (for look-ahead solvers), as given in [16]. In Subsection 2.1 we speak about
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the background, the (abstract) backtracking tree T of a look-ahead solver, whose
size we want to minimise (by polytime means). “Minimising the size” refers to the
construction of T , by recursively expanding a node v into its children w1, . . . , wk.
This is guided by attaching numerical information to each branch, the “dis-
tances” d(v, wi) > 0, a positive real number, the greater the more progress was
made. A simple example for a distance is measuring the number of variables
eliminated in the branch v ; wi. This numerical information is collected per
node in the associated branching tuple d(v). For the actual choice of the branch-
ing, in the context of the solving process (note that T is the final result of this
process, while d records the progress measurements for the branching chosen by
the solver), we assume that a list of branching tuples is given, and a selection
is done by minimising the “projected value” of each branching tuple d(v); that
there is a canonical choice for a projection is shown in Section 3, based on the
general theory on tree sizes reviewed in Subsection 2.2. A fundamental lemma
is presented in Lemma 1, connecting the canonical projection of the branching
tuples in a tree with the canonical projection of the flattening of the whole tree
into a single branching tuple. This lemma is implicit in [16, Lemma 7.5.1], but
there is no proof of it in the literature, and the concept of “flattening a tree”
is a new device introduced here, simplifying certain aspects of the theory. For
the basic Theorem 1 on bounds of tree sizes (which was introduced in [15]),
we get in this way a new proof (the proof of [16, Theorem 7.4.8] is based on
tree-probability distributions, which are not needed in this paper). This section
is concluded by lemmas on expansions of branching tuples into trees, such that
a strong handle on the tree sizes and other data are obtained.

2.1 Trees and distances

The basic object is a rooted tree T , which we treat as (special) directed (finite)
acyclic graph (dag) with exactly one source. So as a digraph we have the set
V (T ) of vertices, which we denote here as the set of nodes nds(T ) := V (T ). The
unique source (the node with no in-neighbours) is denoted by rt(T ) ∈ nds(T ).
The special property of T , which makes it a rooted tree, is that from rt(T )
there is exactly one path to every node of T . As usual we denote by E(T ) ⊂
nds(T )× nds(T ) the set of arcs (directed from the root towards the leaves).

Every node v ∈ nds(T ) has a set chdT (v) ⊂ nds(T ) of children (the out-
neighbours of v). The number of children of a node is its degree, denoted by
degT (v) := |chd(v)| ∈ N0. The leaves of T are the sinks of T , and the set of
leaves is denoted by lvs(T ) := {v ∈ nds(T ) : chd(v) = ∅} ⊆ nds(T ); obviously
v ∈ lvs(T ) ⇔ degT (v) = 0. An inner node of T is a node which is not a
leaf, and we use inds(T ) := nds(T ) \ lvs(T ) for the set of all inner nodes. To
avoid technical difficulties we assume that T has no single-child nodes, that
is, for every v ∈ inds(T ) we have deg(v) ≥ 2. The main complexity measure
here is #nds(T ) := |nds(T )| ∈ N, the number of nodes of T . Sometimes it is
more convenient to consider #lvs(T ) := |lvs(T )| ≤ #nds(T ), the number of
leaves. By definition holds #nds(T ) = #lvs(T ) + |inds(T )|. In a full binary tree
(i.e., all inner nodes have degree two) we have #nds(T ) = 2#lvs(T ) − 1 and
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|inds(T )| = #lvs(T )− 1. To be able to speak of the tuple of children of an inner
node, we make the further assumption that we have ordered trees; we could avoid
that by using multisets, however using tuples seems more natural in our context.
Technically this is handled by considering one infinite linearly ordered set (U ,≤)
(for example U = N with the natural order) as the universe of vertices, that is, for
every rooted tree T we have V (T ) ⊂ U . When we use now chd(v) = {w1, . . . , wk},
then we assume from now one that w1 < · · · < wk (and thus k = deg(v)). As
the induced linear order on lvs(T ) we use the lexicographical order as given by
the paths from the root to the leaves (that is, the order of the leaves as they
show up in the inorder traversal of T ); we could use any other linear order on
the leaves, but this order lets us avoid certain abstractions here.

The main examples of such trees T are given by the branching trees (back-
tracking trees) of look-ahead solvers. At the leaves of T we might have the solved
nodes (where either unsatisfiability was determined, or a (partial) satisfying as-
signment was found), or the nodes as given to a conquer-solver in the C&C
setting. For #SAT-solving we naturally have to consider the whole tree (as is
done in this paper), since we need to count all solutions. For SAT-solving, con-
sidering the whole tree means that the basis for the heuristic is the unsatisfiable
case (without early abortion by finding a satisfying assignment). This is a natural
point of view, since complete SAT-solvers are intrinsically unsatisfiability-driven,
while the possible short-cuts for (just) finding a single satisfiable assignment are
handled by the choice of the first branch; see [16, Section 7.9] and [9, Subsection
5.3.2] for information on this in the context of look-ahead solvers. We remark
that we exclude single-child nodes, since they correspond to an actual reduction
performed (no branching occurred), and can be contracted into the parent node.

The basic building block of the branching heuristic, from the theoretical side,
is given by a distance on T , a map d : E(T ) → R>0 labelling every arc with a
positive real number. The intuitive meaning of d((v, w)) = d(v, w) > 0 is that
it measures the progress made in the transition from v to its child w ∈ chd(v).
More generally, for any (undirected) graph G and a mapping d : E(G) → R>0

we obtain a metric, which is a map d : V (G)2 → R≥0, by defining d(v, w) for
arbitrary v, w ∈ V (G) as the minimum weighted length of a path between v
and w. So a distance d on a (rooted, directed) tree T induces a metric, using
the underlying (undirected) graph. Thus for v, w ∈ nds(T ) we have d(v, w) =
d(v, c)+d(c, w) for the common ancestor c of v, w in T , and where d(v, c) = d(c, v)
resp. d(c, w) is the sum of d-values of arcs on the unique path from c to v resp.
w. In this paper we don’t travel paths against the direction of the arcs, but the
terminology of a “metric tree” for a pair (T, d) is nevertheless a natural choice:

Definition 1. A nontrivial rooted tree T here is a dag T = (V,E) with
V ⊂ U and E ⊆ V × V with exactly one source, where the underlying graph is a
tree (connected and acyclic), where every inner node has at least two children,
and with #nds(T ) = |V (T )| ≥ 3. A distance on T is a map d : E(T ) → R>0.
Pairs (T, d) are called metric trees, and the set of all metric trees is MT . For
an inner node v with chd(v) = {w1, . . . , wk} the associated branching tuple
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d(v) := (d(v, w1), . . . , d(v, wk)) ∈ Rdeg(v)
>0 is the tuple of distances from v to its

children (using the given linear order on the children).

As T is the final result of the run of the look-ahead solver, the branching tuple
d(v) only records the distances for the (final) choices as made by the algorithm
for the branchings. In the process of recursively expanding v, the setting is that
the solver actually sees for every possible branching a corresponding branching
tuple, and the solver chooses one of them; the distance on T then records this
choice, while for the solver a distance d(F, F ′) between problem instances is
needed to construct the branching tuples. The object of study of this paper is
not d (which we assume is given), but the choice of “the best” branching tuple.
For more information on distances d as used in (look-ahead) SAT solvers see [9,
Subsection 5.3.1] and [16, Section 7.7],

So we consider now branching tuples in isolation (later in Subsection 2.2
we introduce the “canonical projection”, which cans the branching tuple into a
single number, the smaller the better). Let BT :=

⋃
k≥2 BTk, BTk := Rk

>0 be
the set of all branching tuples, i.e., all tuples of positive real numbers of width
(length) k ≥ 2. We use the following natural operations for t ∈ BTk:
– |t| := k ∈ N≥2 is the length of t;
– min(t),max(t) ∈ R>0 are the minimal resp. maximal values;

– Σ(t) :=
∑|t|

i=1 ti ∈ R>0 is the sum of all values.

We emphasise that branching tuples contain arbitrary positive real numbers,
and so the theory is a generalisation of the theory of recurrences, which only
consider branching tuples with natural numbers as entries.

From metric trees we extract the set of branching tuples, and for a set of
branching tuples we consider the set of all metric trees using only these tuples:

Definition 2. For (T, d) ∈ MT let BT (T, d) := {d(v) : v ∈ inds(T )} ⊂ BT
be the (finite) set of branching tuples associated with the inner nodes. And for
B ⊆ BT let MT (B) := {T ∈ MT : BT (T ) ⊆ B} be the (infinite) set of metric
trees, where all associated branching tuples are in B.

A tree with a distance can be flattened to a single branching tuple, forgetting
the branching structure:

Definition 3. For T ∈ MT let the branching tuple fl(T ) ∈ BT#lvs(T ) contain
for each leaf v ∈ lvs(T ) the sum of distances from rt(T ) to v, that is, for lvs(T ) =
{w1, . . . , w#lvs(T )} we set fl(T ) := (d(rt(T ), w1), . . . , d(rt(T ), w#lvs(T ))).

Example 1. For the metric tree

T := v1
2

vv 1 !!
4

**v2
4

}}
3

!!

v3
2

}} 2 ��
3

!!

v4

v5 v6 v7 v8 v9
we have
1. #nds(T ) = 9, #lvs(T ) = 6, |inds(T )| = 3.
2. BT (T ) = {(2, 1, 4), (4, 3), (2, 2, 3)}.
3. fl(T ) = (2 + 4, 2 + 3, 1 + 2, 1 + 2, 1 + 3, 4) = (6, 5, 3, 3, 4, 4).
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2.2 The tau-function and bounds on tree sizes

Generalising the notion of a root of a “characteristic polynomial” from the theory
of recurrences, the “tau-function” is a fundamental tool:

Definition 4. For t ∈ BT we define the characteristic function χt : R>0 → R>0

by χ(t)(x) :=
∑|t|

i=1 x
−ti . Since χ(t) is strictly decreasing with χ(t)(1) = |t| ≥ 2

and limx→∞ χ(t)(x) = 0, there is exactly one x0 ∈ R>1 with χ(t)(x0) = 1, and
we define τ(t) := x0.

So τ(t) ⋚ x for x > 0 iff χ(t)(x) ⋚ 1. The basic intuition behind τ : BT → R>1

can be grasped by considering the “main” solution to a difference equation: One
seeks a function f : N0 → R≥0 satisfying for some given a ∈ Nk a recurrence

∀n ∈ N0, n ≥ ai : f(n) =
∑k

i=1 f(n− ai). For example the Fibonacci recurrence
f(n) = f(n− 1) + f(n− 2) is given by k = 2 and a = (1, 2). Now f(n) := τ(a)n

fulfils the recurrence, since
∑k

i=1 τ(a)
−ai = 1, and multiplying both sides with

τ(a)n yields τ(a)n = f(n) =
∑k

i=1 τ(a)
n−ai =

∑k
i=1 f(n− ai). Basic properties

for a ∈ BT , λ ∈ R>0 and the restriction τk := τ | BTk are (all with easy proofs):

1. τk is symmetric (invariant under permutation).
2. τk is strictly decreasing in each component.
3. τk(1, . . . , 1) = k.
4. If t is a proper prefix of t′ then τ(t) < τ(t′).
5. τ(λ · a) = τ(a)1/λ, τ(a)min(a) ≤ |a| ≤ τ(a)max(a).

An important property of all τk is that they are strictly convex, that is for all
a, b ∈ BTk and 0 < λ < 1 holds τ((1 − λ)a + λb) < (1 − λ)τ(a) + λτ(b) (this
requires more work to check). This implies for example that τ(2, 2) < τ(1, 3),
using a := (1, 3), b := (3, 1) and λ := 0.5. Strict convexity is a generalisation
of the “penalty” given to “imbalanced” branching tuples, due to the inherent
exponential growth: Comparing e.g. (x, x) with (x−ε, x+ε), the former is better
since the loss in the branch x − ε is bigger than the win in the branch x + ε,
due to the convexity of exponential functions. A simple sufficient criterion for
deriving τ(a) ≤ τ(b) is obtained by using symmetry, monotonicity and the prefix
condition; we condense this into the following order relation:

Definition 5. The order-relation a⪇b (“a is trivially smaller than b”) holds for
a, b ∈ BT if the following three conditions are fulfilled: (1) |a| ≤ |b|; (2) there is
a permutation a′ of a, such that for all i ∈ {1, . . . , |a|} holds ai ≥ bi; (3) either
|a| < |b| or there is i ∈ {1, . . . , |a|} with a′i > bi.

Some simple properties of the trivially-smaller-relation (“trivially better”) are:

1. ⪇ is a strict partial order on BT (i.e., irreflexive (a ̸⪇ a) and transitive
(a ⪇ b ∧ b ⪇ c ⇒ a ⪇ c)), without minimal or maximal elements.

2. If a ⪇ b then τ(a) < τ(b).
3. Sufficient criterion for a ⪇ b are:

(a) |a| ≤ |b| ∧min(a) > max(b) ⇒ a ⪇ b.
(b) |a| < |b| ∧min(a) ≥ max(b) ⇒ a ⪇ b.
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A fundamental lemma is that the tau-value for a flattened metric tree is in the
interval given by minimum and maximum tau-values over the inner nodes; for a
set of branching tuples B we use τ(B) := {τ(t) : t ∈ B} in the usual way:

Lemma 1. For T ∈ MT holds min τ(BT (T )) ≤ τ(fl(T )) ≤ max τ(BT (T )).

Proof. Let r := rt(T ). First consider the special case |inds(T )| = 2. Let a := d(r),
and for the other inner node v ∈ inds(T ) \ {r} let b := d(v), while c := fl(T ).
W.l.o.g. we can assume that v is the first child of r, and thus, using p := deg(r)
and q := deg(v) we have c = (a1+ b1, . . . , a1+ bq, a2, . . . , ap). W.l.o.g. we further
assume that τ(a) ≤ τ(b), and thus χ(b)(τ(a)) ≥ 1 and χ(a)(τ(b)) ≤ 1. So we
have to show τ(a) ≤ τ(c) ≤ τ(b). The first inequality follows by

χ(c)(τ(a)) =

q∑
i=1

τ(a)−a1−bi +

p∑
i=2

τ(a)−ai = τ(a)−a1 ·
q∑

i=1

τ(a)−bi +

p∑
i=2

τ(a)−ai

= τ(a)−a1 · χ(b)(τ(a)) +
p∑

i=2

τ(a)−ai ≥ τ(a)−a1 +

p∑
i=2

τ(a)−ai = 1,

and the second inequality follows by

χ(c)(τ(b)) =

q∑
i=1

τ(b)−a1−bi +

p∑
i=2

τ(b)−ai = τ(b)−a1 ·
q∑

i=1

τ(b)−bi +

p∑
i=2

τ(b)−ai

= τ(b)−a1 +

p∑
i=2

τ(b)−ai = χ(a)(τ(b)) ≤ 1.

Now we prove the statement by induction over n := |inds(T )|. For n = 1 we
have fl(T ) = d(r) and BT (T ) = {d(r)}, and thus the assertion trivially holds. It
remains the case n ≥ 2. Consider a node v ∈ inds(T ) with chd(v) ⊆ lvs(T ). Let
T ′ be the subtree of T with the leaves of v removed, that is, V (T ′) = V (T )\chd(v)
and E(T ′) = E(T ) \ {(v, w) : w ∈ chd(T )}. So |inds(T )| = n − 1, and we can
apply the induction hypothesis to T ′, that is, we have

min τ(BT (T ′)) ≤ τ(fl(T ′)) ≤ max τ(BT (T ′)).

We note that BT (T ) = BT (T ′) ∪ {d(v)}. Let T ′′ be the flattening of T ′ as a
tree with one inner node, and so we have fl(T ′′) = fl(T ′). We assume rt(T ′′) = r
and v ∈ lvs(T ′′), and thus for the metric tree S obtained by attaching the
branching of v in T to T ′′ we have fl(S) = fl(T ) and BT (S) = {fl(T ′), d(v)}. We
can apply the above special case to S and obtain min τ(BT (S)) ≤ τ(fl(S)) ≤
max τ(BT (S)). Finally we have min τ(BT (T )) = min(τ(BT (T ′)) ∪ {d(v)}) ≤
min({τ(fl(T ′))}∪{d(v)}) = min τ(BT (S)), and similarly holds max τ(BT (S)) ≥
max(τ(BT (T ))). ⊓⊔

Example 2. For the metric tree
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T := v1
2

vv
1

((
v2

1

}}
1

!!

v3
3

}}
8

!!
v4 v5 v6 v7

we have
1. BT (T ) = {(2, 1), (1, 1), (3, 8)}.
2. fl(T ) = (2 + 1, 2 + 1, 1 + 3, 1 + 8) = (3, 3, 4, 9).
3. τ(BT (T )) = {1.618 . . . , 2, 1.1461 . . .}, τ(fl(T )) = 1.4147 . . ..

The global meaning of the tau-values of inner nodes over a tree with given
distance is that they yield upper (and lower) bounds on the number of leaves,
which is expressed by the following theorem (for which we give an alternative,
simpler proof here):

Theorem 1. [16, Theorem 7.4.8] For T ∈ MT holds

(min τ(BT (T )))min fl(T ) ≤ #lvs(T ) ≤ (max τ(BT (T )))maxfl(T ).

Proof. Lemma 1 yields (min τ(BT (T )))min fl(T ) ≤ τ(fl(T ))min fl(T ) ≤ |fl(T )| =
#lvs(T ) ≤ τ(fl(T ))maxfl(T ) ≤ (max τ(BT (T )))maxfl(T ). ⊓⊔

Theorem 1 gives a global meaning to the target for the branching heuristics
to choose branchings with associated branching tuples t minimising τ(t). Of
course, this only makes sense for a “sensible” distance d, with max fl(T ) being
a reasonable parameter of the input. Our main application of Theorem 1 is to
show that branching tuples t, t′ with τ(t) < τ(t′) can be expanded so that the
tau-relation becomes trivial:

Definition 6. An expansion of t ∈ BT is any fl(T ) ∈ BT for T ∈ MT ({t}).
So for any expansion t′ of t we have τ(t′) = τ(t).

Lemma 2. For t ∈ BT and K ∈ R≥max(t) there exists an expansion t′ of t with

min(t′) > K −max(t), max(t′) ≤ K, and τ(t)K−max(t) < |t′| ≤ τ(t)K .

Proof. Consider any metric tree T with BT (T ) = {t}, such that max fl(T ) ≤ K,
while T can not be expanded further (by expanding any leaf) without violating
the bound maxfl(T ) ≤ K; obviously such T exist, since one can start with t itself,
and expand leaves as long as one stays below K. Let t′ := fl(T ). Then we have
min(t′) > K−max(t), and by Theorem 1 we get τ(t)K−max(t) < |t′| ≤ τ(t)K . ⊓⊔
Lemma 3. For all a, b ∈ BT with τ(a) < τ(b) there are expansions a′ of a and
b′ of b with a′ ⪇ b′.

Proof. Let α := ln(τ(b))
ln(τ(a)) (thus α > 1). Choose any Kb ≥ max(a)+α·max(b)

α−1 > 0.

Thus for β := Kb +max(a) and γ := α · (Kb −max(b)) holds β ≤ γ, and we can
choose (any) Ka with β ≤ Ka ≤ γ. By Lemma 2 there are expansions a′, b′ of
a, b with
– min(a′) > Ka −max(a) and |a′| ≤ τ(a)Ka ;
– max(b′) ≤ Kb and τ(b)Kb−max(b) < |b′|.

From Ka ≥ β we get Ka−max(a) ≥ Kb, and thus min(a′) > max(b′). And from
Ka ≤ γ we get τ(a)Ka ≤ τ(b)Kb−max(b), and thus |a′| < |b′|. ⊓⊔
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3 The canonical order of branching tuples

As explained in Subsection 2.2, the canonical projection τ(t) has a natural global
meaning, namely it yields an upper bound on the number of leaves in the branch-
ing tree. Thus it makes sense to use τ(t) for projection, and observing its value
should be also useful to monitor the state of the search. Here now we give its
local meaning : the order on branching tuples as stipulated by τ is uniquely
given by natural axioms on how we want the projection to behave when com-
paring different branching tuples. More precisely, recall that a total (or linear)
quasi-order on a set X is a binary relation ≤ which is reflexive (x ≤ x), tran-
sitive (x ≤ y ∧ y ≤ z ⇒ x ≤ z) and total (x ≤ y ∨ y ≤ x). By defining
t ≤τ t′ :⇔ τ(t) ≤ τ(t′) we obtain a total quasi-order on BT (the smaller the
“better”). The task of this section is to give an intrinsic characterisation of this
order. This is achieved in Theorem 2, which is equivalent to [16, Theorem 7.5.3],
but there is no proof there, while here we give a complete proof. Based on the
notion of expansions, we can also provide a natural formulation for the case of
restricted width of branching tuples.

What are now the axioms for comparing branching tuples? Consider a total
quasi-order ⪯ on BT . As usual we define t ≃ t′ if t ⪯ t′ and t′ ⪯ t (≃ is an
equivalence relation on BT ), and t ≺ t′ if t ⪯ t′ and t ̸≃ t′. We call it a canonical
branching order if it fulfils the following four properties for all t, t′ ∈ BT :

(S) Symmetry For a permutation t′ of t holds t ≃ t′.

(E) Expansion If t′ is an expansion of t then t′ ≃ t.

(T) Trivial comparison If t ⪇ t′ then t ≺ t′.

(D) Density For t ≺ t′ there is ε > 0 such that t− ε ∈ BT and t− ε ≺ t′.

For (D) we used t− ε := (t1 − ε, . . . , t|t| − ε).

Theorem 2. There is exactly one canonical branching order, namely ≤τ .

Proof. ≤τ is a canonical branching order by Lemma 1 and continuity of τ (for
fixed branching-width). Now consider any canonical branching order ⪯ and a, b ∈
BT , where we assume w.l.o.g. a ⪯ b. In case of τ(a) < τ(b) by Lemma 3 there
are expansions a′, b′ with a′ ⪇ b′. Thus by (E) and (T) we get a ≃ a′ ≺ b′ ≃ b.
It remains the case τ(a) = τ(b). If a ≃ b, then we are done, so assume w.l.o.g.
a ≺ b. By (D), (T) there is ε > 0 with a ≺ a− ε ≺ b. We have τ(a) < τ(a− ε),
and thus τ(b) < τ(a− ε), whence by the first part b ≺ a− ε, a contradiction. ⊓⊔

Corollary 1. For k ∈ N, k ≥ 2, the canonical branching order ≤τ restricted to
BTk is uniquely determined by the conditions (S), (T), (D) and

(Ek) If for a, b ∈ BTk there are expansions a′, b′ with a′ ⪇ b′, then a ≺ b.

Proof. The proof of Theorem 2 works as well. ⊓⊔
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4 Analysis and numerics of binary tau

In the remainder of this paper we focus on binary branchings (k = 2). In this
section we first concentrate τ(a, b) to its essential core wτ(x), and show in Lemma
4, that this core is asymptotically very close to a well-known special function,
the Lambert-W function. This enables us in Theorem 4 to give good lower and
upper bounds for wτ(x) by elementary functions. Using these bounds as starting
points for the Newton-Raphson algorithm, only very few iterations are needed
to compute wτ(x) (and thus τ(a, b)) with full precision (the observed worst-case
precision for double is two ulp’s, that is, nearly precise in the last machine-digit).

At least for numerical reasons it seems better to consider the logarithm of
the tau-function, denoted by lτ : BT → R>0, and defined by lτ(t) := ln(τ(t))
(using the natural logarithm). This replaces the computation of arbitrary powers
(x, y) 7→ xy by the computation of the exponential function (x, y) 7→ exp(x·y). It
seems indeed best to compute lτ(t) directly, and then to use τ(t) = exp(lτ(t)):

lτ(t) is the unique x ∈ R>0 such that
∑|t|

i=1 exp(−ti · x) = 1. We now have
lτ(λ · t) = 1

λ · lτ(t) and lτk(1, . . . , 1) = ln(k).

We see that T(t) := ln(|t|)
lτ(t) fulfils T(λ·t) = λ·T(t) and min(t) ≤ T(t) ≤ max(t).

Indeed T : BT → R>0 has further properties of a (general) “mean”, as shown
in [16, Section 7.3.3]. We will discuss some further properties of such means in
Subsection 5.1. Here for us only the bounds on T(t) from [16, Theorem 7.3.4]

are relevant. In general we have T(t) ≤ Σ(t)
|t| , that is mean-tau is at most the

arithmetic mean. We remark that T(t) for fixed |t| is strictly concave.
In the remainder of this paper we concentrate on lτ2 : BT2 → R>0, as this

is at least currently most important for SAT solving. So lτ(a, b) is the unique
x > 0 with exp(−a · x) + exp(−b · y) = 1. It is an elementary exercise to show
that T(a, b) ≥

√
a · b holds, that is, binary mean-tau is at least the geometric

mean. Indeed it seems fastest and most accurate to not compute lτ(a, b) directly,
but to eliminate one argument of lτ(a, b); we use the form which yields a strictly
increasing function:

Definition 7. For x ∈ R>0: wτ (x) := lτ(1, 1
x ) ∈ R>0.

We have the following easy properties:

1. wτ(x) = lτ(1, 1
x ) = x · lτ(1, x), wτ(x−1) = x−1 wτ(x).

2. wτ is strictly increasing with limx→0 wτ(x) = 0 and limx→+∞ wτ(x) = +∞.

3. wτ(1) = ln(2), wτ(2) = 2 ln( 1+
√
5

2 ), wτ( 12 ) = ln( 1+
√
5

2 ).

4. lτ(a, b) = 1
a lτ(1, b

a ) =
1
a wτ(ab ).

5. The characteristic equation for wτ(a), a ∈ R>0, and x ∈ R>0 is

exp(−x) + exp(−x

a
) = 1.

The above mentioned bounds, that T(a, b) lies between the geometric and
the arithmetic mean, yields elementary bounds for wτ(x):

ln 4

1 + x−1
= ln(4)

x

x+ 1
≤ wτ(x) ≤ ln(2)

√
x.
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We will see that asymptotically wτ(x) ∼ ln(x), and thus these bounds are very
bad for large x. The best bounds on wτ(x) for larger x seem to be obtained by
using the principal branch of the Lambert-W function (see [18, Section 4.13]).
This is a function W : R≥0 → R≥0, defined for a ∈ R≥0 as the unique x ∈ R≥0

with x · exp(x) = a. Thus W (a) · exp(W (a)) = a, exp(W (a)) = a
W (a) , W (a) =

a
exp(W (a)) , and exp(−W (a)) = W (a)

a for a > 0. Simple values are W (a) = 0 iff

a = 0, W (e) = 1, and more generally W (x · exp(x)) = x.
Before we can show the close relation between wτ(x) and W (x), we remind

at a few elementary properties:

1. For all x ∈ R: exp(x) ≥ 1 + x.
2. Thus for all x ∈ R>−1: exp(−x) ≤ 1

1+x .

3. For all x ∈ R \ {0,−1}: 1
1+x + 1

1+ 1
x

= 1.

The following relation was pointed out in the discussion [13]:

Lemma 4. For all x ∈ R>0 holds W (x) ≤ wτ(x) ≤ ln(exp(W (x)) + 1).

Proof. We show lower and upper bound by substitution into the characteris-

tic equation for wτ . First we have exp(−W (x)) + exp(− 1
xW (x)) = W (x)

x +

exp(− 1
xW (x)) ≥ W (x)

x + (1 + − 1
xW (x)) = 1, and thus W (x) ≤ wτ(x). The

upper bound follows similarly:

exp(− ln(exp(W (x)) + 1)) + exp(− 1

x
ln(exp(W (x)) + 1)) =

1

1 + exp(W (x))
+ exp(− 1

x
ln(exp(W (x)) + 1)) ≤

1

1 + exp(W (x))
+

1

1 + 1
x ln(exp(W (x)) + 1)

≤

1

1 + exp(W (x))
+

1

1 + 1
x ln(exp(W (x)))

=
1

1 + exp(W (x))
+

1

1 + 1
xW (x)

=

1

1 + exp(W (x))
+

1

1 + 1
exp(W (x))

= 1.

⊓⊔

So wτ(x) is asymptotically equal to W (x). Indeed not just limx→∞
wτ(x)
W (x) = 1,

but also limx→∞ wτ(x) − W (x) = 0. The best bounds on W (x) seem to be as
follows:

Theorem 3 ([12, Theorems 2.5, 2.7]). For x ∈ R>1 holds:

(lnx− ln lnx+ 1)
lnx

1 + lnx
≤ W (x).

While for x ∈ R≥e holds:

W (x) ≤ lnx− ln lnx+
e

e− 1

ln lnx

lnx
.
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Thus limx→∞
W (x)
ln(x) = 1, and so also limx→∞

wτ(x)
ln(x) = 1. We summarise the

elementary bounds for wτ(x):

Theorem 4. For x ∈ R>1 holds

max
( ln 4

1 + x−1
, (lnx− ln lnx+ 1)

lnx

1 + lnx

)
≤ wτ(x)

≤ min
(
ln(2)

√
x, ln(

x · (1 + lnx)

(lnx− ln lnx+ 1) lnx
+ 1)

)
.

The first parts of the min- and max are used in the bounds only for very small x
(less than 3; but for these x they are crucial), while for large x the second parts
are (much) better (indeed very accurate). Using the lower bound of Theorem 4
to compute wτ(x) via Newton-Raphson iteration (which will converge monotoni-
cally from below to wτ(x), with quadratic convergence), yields very good results:
The hardest cases are for say x ≤ 1000, with the maximum observed iterations
until fixed-point (typically with one ulp precision, observed never more than two
ulp) being six iterations, while the average case for usual SAT-solving seems to
be around 3.5 iterations (always for full precision). Not using the bounds ob-
tained by Lambert-W means for x in usual SAT ranges hundreds of iterations,
and for very large x thousands of iterations.

We conclude by mentioning that in [14] an algorithm for computing the
canonical order of branching tuples is stated, which aims at avoiding to com-
pute the (l)tau-value explicitly, by using the characteristic functions to only
perform Newton-Raphson iteration when needed. If this does not start with a
good bound, then however this takes, as with the (l)tau-computation, many it-
erations. And for binary branching tuples, as we have seen above, the number
of iterations is now, with the very good bounds, very low anyway, and thus such
an approach seems only needed for non-binary branching tuples. For the best
branching tuple found, one may want to compute the (l)tau-value anyway, due to
its global value, making it possible to monitor the overall progress of the search.

5 On binary projections

Practical experience shows that in most cases the maximum-projection (i.e.,
target is to maximise) (a, b) ∈ BT2 7→ a · b is much better than (a, b) ∈ BT2 7→
a + b. Why is this the case? [16, Section 7.6] offers two explanations: On the
one hand, based on Theorem 1 it is argued, that maximising the sum is like
maximising a lower bound on the tree-size, while maximising the product is like
minimising an upper bound on tree-size, which is intrinsically more meaningful;
this argument makes sense, but is purely qualitatively. On the other hand, [16,
Lemma 7.6.1] states that the approximation of T(a, b) by

√
a · b is better than

the approximation by a+b
2 , measured in terms of differences; this does not take

into account the scale of numbers, and is thus not a very precise argument. We
have also the fact that the arithmetic mean is linear (convex and concave), while
the geometric mean is concave, which fits better to the expected superlinear
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growth. In this final section now we want to develop a more precise tool given
by the “kernel” of a mean, and we show alternatives to sum, product and tau,
by considering the p-mean for 0 ≤ p ≤ 1 as some form of continuum between
product and sum. The main argument why Corollary 1 possibly is not the final
truth about binary projections is that the trees for concrete instances are not
arbitrarily large (which is implicitly assumed in the proof of Corollary 1).

From the outset, one considers total quasi-orders ≺ on BT2 fulfilling (S), (T)
and (D). By Corollary 1 we know that ≺ is ≤τ (restricted to binary branchings)
iff ≺ is compatible with every trivial comparison obtain by expansion, i.e., (E2)
holds. We now consider whether there are interesting such orders ≺ without (E2).
To get a handle on different orderings, we consider maps m : BT2 → R>0, such
that m(a, b) is to be maximised. In order to be able to compare the numerical
values of such projections m, we standardise them to form “means”, as we will
discuss now (that’s why we consider maximisation here instead of minimisation,
which was needed for the tau-function).

5.1 On means in general

The minimum requirements for a mean m : BT2 → R>0 are:

1. m(a, b) = m(b, a) (symmetry).
2. m is strictly increasing in each component.
3. min(a, b) ≤ m(a, b) ≤ max(a, b) (consistency).

We additionally assume homogeneity here (“scale invariance”), that is, for λ > 0
holds m(λ · a, λ · b) = λ · m(a, b). As a further requirement, concavity is of
importance, assuming that tree-growth is super-linear. We have mentioned three
means already:

1. m0(a, b) :=
√
a · b, the geometric mean: this is the default for SAT-solving

(note that maximising m0(a, b) is equivalent to maximising a · b).
2. m1(a, b) := a+b

2 , the arithmetic mean: this was the older default heuristic,
and is typically still used for tie-braking.

3. T(a, b) = ln(2)
lτ(a,b) ; we have m0(a, b) ≤ T(a, b) ≤ m1(a, b).

A natural generalisation of m0,m1, as already considered in [16, Section 7.3.3]
for obtaining bounds, are the p-means mp for p ∈ R. Since the sum is already
bad enough (in most cases), in this initial study we do not go beyond m1 — and
indeedmp is strictly convex iff p > 1. We also don’t go below the geometric mean,
as that seems not fruitful in general (though on selected families of benchmarks
this might be different). So we restrict our attention to 0 ≤ p ≤ 1:

1. mp(a, b) := (a
p+bp

2 )1/p for 0 < p ≤ 1.
2. m1(a, b) is the above arithmetic mean.
3. mp(a, b) ≥ mp′(a, b) for p ≥ p′.
4. limp→0 mp(a, b) = m0(a, b).
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5.2 Comparing the various means by their kernels

Due to homogeneity, we can reduce means with two arguments to their “kernels”,
which are functions in just one argument:

Definition 8. For a mean m : BT2 → R>0 let the kernel m : R≥1 → R≥1 be
defined as m(x) := m(1, x) for x ≥ 1.

We assume in the following w.l.o.g. 0 < a ≤ b (using symmetry). Due to homo-
geneity we have m(a, b) = a ·m( ba ). From m ≥ m′ follows m ≥ m′, and thus we

have m1 ≥ mp ≥ m0 as well as m1 ≥ T ≥ m0. The meaning of the kernel is as
follows:

– We measure the imbalance of (a, b) ∈ BT2 by the quotient x := b
a ≥ 1 (the

larger x, the greater the imbalance).

– m(x)
m(1) = m(x) is the “reward” given for having (1, x) instead of just (1, 1).

– Due to the standardisation via using means, we can indeed compare the
kernel-values for different means p, q: if p(x) ≥ q(x), then the mean p gives
a greater reward to x than the mean q.

The kernels of our means are as follows; we use the symbol ∼ here to denote
asymptotic equality (i.e., the quotient approaches 1 as x goes to infinity):

1. m1(x) =
1
2 + x

2 ∼ x
2 .

2. mp(x) = ( 12 + xp

2 )1/p ∼ x
21/p

.

3. T(x) = ln(2)
wτ(1/x) = ln(2) x

wτ(x) ∼ ln(2) x
W (x) ∼ ln(2) x

ln(x) =
x

log2(x)
.

4. m0(x) =
√
x.

m1 gives the greatest reward, m0 the smallest, while mp,T are incomparable in
general, but there is a clear picture: There is a threshold value p0 ≈ 0.307 (the
infimum of 0 ≤ p ≤ 1 with T ≤ mp), where for p > p0 the mean mp always gives
a greater reward than T, while for p < p0 first (i.e., small x) the reward given
by mp is smaller, and then greater than the reward given by T (and the smaller
p, the larger the first realm, being the whole range finally for p = 0).

This paper concentrates on the basic theory, but we can report on the very
first experimental results. As look-ahead solver the simplest SAT-algorithm, the
DLL algorithm ([6]) was used, with a modern implementation and branching
heuristic as given by the tawSolver ([1]). The projections T andmp for 0 ≤ p ≤ 1
were run on uniform random 3-SAT benchmarks, and compared by average size
of the corresponding backtracking trees. The optimal p obtained was p ≈ 0.26,
which was still clearly worse here than T (by 10%), while slighly better than m0

(by 1%), and much better than m1 (by 20%). Clearly the runtime for T is higher,
up to a total runtime twice as much compared to m0, but for a stronger look-
ahead solver (DLL indeed is the “zero-look-ahead look-ahead-solver”), which
spends much more time on each variable, the tau-computation would contribute
far less to the total runtime, while its influence could be much larger. Even for
the tawSolver, on selected combinatorial benchmarks the effects (positive and
negative) on tree-sizes can be much higher.
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Our first general hypothesis on the (dynamic) choice of a good projection for
binary branchings is, phrased in the terminology of means-functions: In general T
is best, but for large reductions (distances) or for nodes closer towards the leaves
the penalty for imbalance can be reduced (there is no “exponential growth”
anymore), moving towards m1, while possibly closer to the root, or when only
small reductions are achievable, it is conceivable that an increase in the penalty,
moving closer tom0, might be beneficial (the situation might get “out of control”,
and thus one needs to be more “cautious”).

6 Summary and outlook

We provided a review of the general theory of branching heuristics for look-
ahead-like solvers. Via flattening of metric trees, we gave a new simple proof of
the main theorem on bounding tree sizes, and we were able to provide concise
proofs showing the uniqueness of the canonical branching order. Turning to
binary branchings, the core of the binary tau-function has been condensed into
the function wτ(x), where strong lower and upper bounds are given, showing
wτ(x) ∼ ln(x). That “core” (in a variation) yielded the kernel of generalised
means, which enabled us to make precise comparisons between alternatives to
standard projections for binary branchings. We derived a first general hypothesis
on a better dynamic numerical control of the branching process.

Perhaps the most important future application of this whole approach is in
improving Cube-and-Conquer (see [10] for a high-level overview). In general,
having strong methods for splitting is vital here. The Cube-and-Conquer solver
needs to use a strong branching scheme in the cubing-phase, creating a tree,
where the leaves are the problems given to the conquer-solver. This scheme relies
on the analysis of the tree created, with the main target of minimising tree size.
More general than a lookahead SAT solver, the leaves here are not those nodes
where the residual instances were “solved”, but where they are “easy enough”
for the conquer-solver. The target is still to minimise tree sizes, and for that the
theory outlined in the paper is the very basis. The higher cost of computing τ(t)
should be less relevant in this context.

A further aspect, which should become important in the future, is that for
a branching-tuple t by τ(t) we obtain a global evaluation on the goodness of t
(“global” in the sense of being comparable in principle over the whole course
of computation). Monitoring these values should be valuable to gauge “success”
or “failure” of the current strategy, possibly triggering a switch of methods,
e.g., cutting off the cube-computation at the current node and switching to the
conquer-solver (somewhat similar to random restarts for CDCL solvers).
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