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Abstract. Constrained location problems find a wide range of prac-
tical applications. Recent work showed that dedicated brute-force al-
gorithms and greedy approach enable solutions of reasonable effi-
ciency, for a restriction of the general constrained location problem,
referred to as the branch location problem. This paper extends earlier
work in several ways. First, the paper develops propositional encod-
ings for the branch location problem. Second, given that the branch
location problem is a restriction of the general constraint location
problem, the paper shows that the restricted problem is still hard
for NP. Third, the paper devises improved propositional encodings
for the branch location problem, which in practice enable not only
solving exactly a significantly larger class of problems but also effec-
tively approximating optimal problem solutions, using state-of-the-
art (complete and incomplete) Maximum Satisfiability (MaxSAT)
solvers.

1 INTRODUCTION

Facility location problems are representative of the field of location
science [17, 29]. This field is characterized by a wealth of differ-
ent optimization problems, finding a wide range of practical appli-
cations [32, 23, 36, 28, 44, 42, 33, 20, 16, 2, 18, 19]. Despite the
practical relevancy of location problem, existing solutions most of-
ten do not resort to the use of constraint programming approaches
(including SAT and MaxSAT), albeit a few exceptions have been
documented [32, 9, 39, 21].

Among a wide range of variants of facility location problems, one
concrete example is the branch location problem. The problem for-
mulation considers a number of branches (or facilities) and a num-
ber of customers (or customers). The physical distance between each
customer and (some of the branches) is represented by a weighted
edge. Given a target number of branches to eliminate, the goal of
the branch location problem is to decide which branches to elim-
inate such that the number of dissatisfied customers is minimized.
Customers are declared to be dissatisfied if the increase in penalty
exceeds a given target threshold ∆.

Example 1 Throughout the paper, we consider one small exam-
ple, consisting of three branches { f1, f2, f3} and six customers
{c1,c2,c3,c4,c5,c6}. The purpose of this concrete example is to
close one of the branch locations. For each customer, there is a
penalty associated with each branch, e.g. it can measure the distance
required for the user to visit the branch. For our concrete example,
the matrix of penalties is shown in Figure 1. Moreover, we assume
∆ = 300.
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f1 f2 f3

c1 250 600 700
c2 1200 700 950
c3 950 1100 450
c4 400 950 800
c5 1150 800 350
c6 1250 600 1050

(a) Matrix of penalties

f1 f2 f3

c1 +1 0 0
c2 0 0 0
c3 0 0 +1
c4 +1 0 0
c5 0 0 +1
c6 0 +1 0

(b) Dissatisfied customers (∆= 300)

Figure 1: Branch location example

As one can observe, for customer c1, if branch f1 is to be closed, then
customer c1 will increase its penalty from 250 to 600 or 700. Thus,
the increase in penalty always exceeds the threshold of 300, and so
if branch f1 is removed, the customer c1 will be dissatisfied.
For this concrete example, the goal is to select one branch to close
such that the number of dissatisfied customers is minimized. Fig-
ure 1b shows a matrix of dissatisfied customers. It is easy to conclude
that the branch to remove should be f2, as the number of dissatisfied
customers is minimized 4.

There are more general formulations of the problem, which en-
able the addition of branch locations [45]. This paper considers the
restriction of the problem where only existing branch locations can
be removed. Recent work proposed dedicated algorithms for the
branch location problem [46], namely a so-called brute force ap-
proach, based on exhaustive search, and an alternative greedy ap-
proach, with no guarantees of optimality.

Given that the problem formulation is mostly propositional, a nat-
ural question is whether available tools (e.g. SAT/MaxSAT or their
CP or SMT counterparts) could be effective at solving this prob-
lem. This paper confirms that a basic propositional encoding does
not enable general purpose solvers to outperform dedicated solutions.
Analysis of the basic propositional encoding reveals a limitation of
the modeling, which impacts the effectiveness of MaxSAT solvers.
As a result, the paper identifies optimizations to the proposed encod-
ing, which are inspired on fairly general insights, and which enable
significant performance improvements, including outperforming the
recently proposed state-of-the-art solutions [46]. In addition, since
branch location is a restriction of the general problem of facility lo-
cation, the paper shows that the branch location problem is hard for
the class NP of decision problems.

4 Clearly, for the case when 1 branch is to be removed, there is a straightfor-
ward polynomial time solution, consisting of checking (and picking) which
column maximizes the number of dissatisfied customers. As shown in this
paper, and for an arbitrarily large number of branches to close, the problem
is computationally harder, even in the restricted case of branch location
problems.



The paper is organized as follows. The concepts and notation used
throughout the paper are introduced in Section 2. The branch loca-
tion problem, i.e. restriction of facility location problems considered
in this paper, is presented in Section 3. This section also demonstrates
the NP-hardness of the problem. The propositional encoding of the
branch location problem is detailed in Section 4. Finally, the exper-
imental results are analyzed in Section 5, and the paper concludes
in Section 6.

2 PRELIMINARIES

Basic knowledge of graph-related problems and computational com-
plexity is assumed, including weighted and bipartite graphs, as well
as the NP-hard set cover problem [27]. (Alternatively, the reader is
referred to standard bibliography [12].)

Facility Location Problems. Facility location problems have been
extensively investigated in Operations Research, and a wide range
of formulations exist [17, 29]. There has been some work on using
constraint programming with specific formulations of facility loca-
tion [9, 39, 21]. This paper considers a restriction of the more gen-
eral budget-constrained location (BCL) problem [45], which we now
detail5.

We consider a network with C = {1, . . . ,n} nodes, denoting cus-
tomers, S = { j1, . . . , jq} nodes denoting existing facilities and T =
{ jq+1, . . . , jm} nodes denoting possible new facilities, and F = S∪T ,
with |F | = m. D is a distance matrix, relating customers and facili-
ties, where di j denotes the distance between customer node i∈C and
facility node j ∈ F . Moreover, wi denotes the demand of customer
node i ∈C, h j denotes the cost of closing an existing facility associ-
ated with node j ∈ S or opening a new facility associated with node
j ∈ T . Finally, p is the target number of facilities and b is the total
budget.

Two sets of variables are used. Variable y j = 1 iff the facility j ∈ F
is open, and variable xi j = 1 iff the demand of customer i ∈ C is
satisfied by the facility opened at j ∈ F .

The BCL problem is formulated as follows (adapted from [45]):

min: ∑i∈C ∑ j∈F widi jxi j

s.t.: ∑ j∈S h j(1− y j)+∑ j∈T h jy j ≤ b

∑ j∈F xi j = 1 ∀i ∈C

∑ j∈F y j = p

xi j ≤ y j ∀i ∈C, j ∈ F

y j ∈ {0,1} ∀ j ∈ F

xi j ≥ 0 ∀i ∈C, j ∈ F

(1)

The BCL problem is hard for NP [45]. This paper considers a simpli-
fied restriction of the BCL problem, which suffices to model a wide
range of branch location problems, e.g. related with location of bank
branches, supermarkets, etc.

Satisfiability & Maximum Satisfiability. The definitions for the
Boolean Satisfiability problem and the Maximum Satisfiability prob-
lems are standard, and are briefly reviewed in this paragraph. (A
more detailed account can be found elsewhere [7].) The paper con-
siders propositional formulas represented in conjunctive normal form

5 A comparison of BCLP with other facility location problems is available
elsewhere [33].

(CNF). CNF formulas are defined on a set X of propositional vari-
ables, and consist of conjunctions of disjunctions of literals, where a
literal is either a variable x from X or its negation (¬x). An assign-
ment µ is a mapping from X to {0,1}. A satisfying assignment (also
referred to as a model) of a formula ϕ is an assignment such that at
least one literal in each clause is assigned value 1. A formula with at
least one satisfying assignment is referred to as satisfiable, whereas a
formula without satisfying assignments is referred to as unsatisfiable.
Boolean satisfiability (SAT) is the decision problem for propositional
logic, and consists of deciding whether a propositional formula is sat-
isfiable. The SAT problem is well-known to be NP-complete, even
though in practice modern SAT algorithms tend to defy the expected
exponential worst-case run time.

Unsatisfiable (or overconstrained) formulas find a wide range of
applications. The study of overconstrained formulas [8] is tightly re-
lated with earlier work on model-based diagnosis [40]. For an over-
constrained formula, a problem of interest is to identify the largest
number of clauses that can be satisfied by any given assignment. This
is referred to as the maximum satisfiability (MaxSAT) problem [31].
In practical settings, MaxSAT comprises a number of variants, al-
lowing clauses to be declared as soft or as hard (i.e. must be satis-
fied) and allowing for soft clauses to be associated with some weight
(i.e. the cost of falsifying the clause). The notation (c,w) is used to
denote a (soft) clause with some weight, where a hard clause is rep-
resented as (c,>), where > denotes an infinite weight. MaxSAT is
well-known to be hard for NP [27] but, mimicking the success of SAT
algorithms, MaxSAT algorithms have also seen significant practical
improvements over the last decade.

Although propositional logic is widely accepted as fairly in-
expressive, there has been extensive work on modeling decision
and optimization problems with propositional logic, extending the
reach of SAT and MaxSAT solvers. Encodings of complex con-
straints into propositional logic have also been extensively stud-
ied [5, 4, 43, 7, 3, 35].

3 PROBLEM FORMULATION

This section describes a restricted formulation of the BCL problem
and analyzes its complexity. The restriction assumes that no new fa-
cilities from T can be added, and focuses solely on the removal of
existing facilities from F = S. Concretely, assume that a set of cus-
tomers, a set of facilities, and also distances between customers and
facilities are given. It is required to close a given number of facilities
to decrease the operational costs. A customer is called potentially
dissatisfied if the distance from the customer to the closest facility is
increased by more than a given threshold after the facilities closure.
Informally, the following problem is considered: to decide which of
the existing facilities should be closed so that the total number of
potentially dissatisfied customers is minimized.

This problem can be naturally formulated on an undirected edge-
weighted complete bipartite graph. Nodes where existing facilities
are located and nodes where customers reside correspond to vertices
of the first and second parts of the bipartite graph, respectively. Every
customer vertex has an edge to every facility vertex, and the edge’s
weight is the distance between the corresponding nodes.

Let us formalize the problem. Consider an undirected edge-
weighted complete bipartite graph G(C,F,E,w), where

• C = {c1, . . . ,cn}, |C|= n, is the set of customer vertices;
• F = { f1, . . . , fm}, |F |= m, is the set of facility vertices;
• E =C×F is the set of edges between vertices from C and F ;
• w : E → IR≥0 is a weight function assigning positive real values



(the distances) to the edges between facility nodes and customer
nodes.

In addition to the notation defined above, the following constant
parameters are defined:

• p, p≤ m, is the number of facility vertices required to delete;
• ∆,∆ ≥ 0, is the threshold by which the minimum edge weight of

every customer vertex can be increased after deletion of facilities
vertices.

Definition 1 (Problem P∆ = (G(C,F,E,w), p,∆)) Given a tuple
P∆ = (G(C,F,E,w), p,∆) where G(C,F,E,w) is an undirected edge-
weighted complete bipartite graph, p is a positive integer, and ∆

is a non-negative real, problem P∆ consists in computing a subset
F ′ ⊆ F, |F ′|= p, p≤m, such that if F ′ is deleted from F, the number
of customer vertices in C, whose minimum edge weight is increased
by more than ∆, is minimal.

Clearly, there are
(m

p
)

different subsets F ′ ⊆ F, |F ′|= p, p≤ m.
Given a graph G(C,F,E,w), it can be efficiently determined

whether the weight of the edge (ci, f j) is no more than ∆ greater than
the minimum edge weight among all edges from E that are incident
to ci:

αi j =

{
1, if 0 < w(ci, f j)≤ min1≤k≤mw(ci, fk)+∆;
0, otherwise.

If ∆ = 0, then αi j shows whether facility j is the closest to customer
i. It is clear that ∑1≤k≤m αik ≥ 1,1 ≤ i ≤ n. Note, that if αi j = 1,
then the closure of facility j may make customer i dissatisfied. Oth-
erwise, if αi j = 0, then the closure of facility j cannot make customer
i dissatisfied.

Let us define a Boolean variable

y j =

{
1, if facility vertex f j will remain undeleted;
0, if facility vertex f j is chosen for deletion.

Since p facilities are to be closed, ∑1≤ j≤m y j = n− p.
Now, let us define one more set of Boolean variables zi that show

whether the minimum weight among all edges that are incident to
customer vertex ci will increase by more than ∆ after deletion of
facility vertices F ′.

zi =

{
1, if ∑1≤k≤m αikyk = 0;
0, if ∑1≤k≤m αikyk ≥ 1.

In other words, if all facilities within distance R + ∆, s.t. R is the
distance to the closest facility from customer i, are to be closed, then
zi = 1. Otherwise, if at least one of them remains open then zi = 0.

Based on the introduced definitions, optimization problem P∆ can
be formulated as follows:

min: ∑
1≤i≤n

zi (2)

s.t.: ∑
1≤ j≤m

y j = n− p (3)

y j ∈ {0,1} ∀ j ∈ {1, . . . ,m} (4)

zi ∈ {0,1} ∀i ∈ {1, . . . ,n} (5)

Problem P∆ is related to a number of location problems, e.g.
to the maximal covering location problem [11] and to the budget-

constrained location problem with opening and closing of facili-
ties [45].

To prove that P∆ is NP-hard, consider its special case where ∆= 0.
(In this case ∆ can be omitted.)

Definition 2 (Problem P0 = (G(C,F,E,w), p)) Given a tuple P0 =
(G(C,F,E,w), p) where G(C,F,E,w) is an undirected edge-
weighted complete bipartite graph G(C,F,E,w) and p is a positive
integer, P0 consists in computing a subset F ′ ⊆ F, |F ′| = p, p ≤ m,
such that if F ′ is deleted from F, the number of customer vertices in
C, whose minimum edge weight is increased, is minimal.

Also, consider the decision variant of P0, i.e. the problem of deter-
mining whether or not it is possible to delete p facility vertices from
F such that ∑1≤i≤n zi = 0. Below we give a formal definition of this
decision problem and prove that it is NP-complete.

Definition 3 (Problem P = (G(C,F,E,w), p)) Given an undirected
edge-weighted complete bipartite graph G(C,F,E,w) and a positive
integer p, problem P = (G(C,F,E,w), p) is to determine whether
there exists a subset F ′ ⊆ F, |F ′| = p such that if F ′ is deleted from
F, there are no customer vertices in C, whose minimum edge weight
is increased.

Theorem 1 Problem P is NP-complete.

Proof. Since for every customer vertex ci the values of αik,1≤ k≤m
are known, the set of its closest facility vertices (i.e. the facility ver-
tices with minimum edge weight among all facility vertices that have
an edge with ci) can be constructed in polynomial time. Therefore,
given a subset of facility vertices F ′ ⊆ F, |F ′| ≥ p, it can be checked
in polynomial time (for every customer vertex) whether or not at
least one closest facility vertex belongs to the complement of F ′,
i.e. F ′′ = F \F ′. Therefore, P belongs to NP.

The next step is to construct a polynomial-time reduction of an
NP-complete problem to P. Consider the set cover problem in its
decision version [27]. An instance of this problem is 〈X ,F ,k〉, where
X is a finite set of elements, F is a family of subsets of X such that
every element of X belongs to at least one subset in F , k is a positive
integer. A cover is a subfamily C ⊆F of subsets whose union is X .
The set cover problem is to determine whether there exists a cover of
X of size k.

Let us construct an algorithm that reduces the set cover problem
to problem P. The reduction algorithm takes as input an instance
〈X ,F ,k〉 of the set cover problem, where |X | = n, |F | = m. The
output of the reduction algorithm is the instance 〈G(C,F,E,w), p〉 of
problem P, where p = n− k and G is an undirected edge-weighted
complete bipartite graph.

The reduction algorithm transforms every element from X into a
vertex c ∈ C and every set U ∈ F into a vertex f ∈ F , so |C| =
|X | = n, |F | = |F | = m. For every x ∈ X and U ∈F , the algorithm
constructs an edge (c, f ). The weight w(c, f ) of the edge is set to 1 if
x occurs in U ; otherwise w(c, f ) is set to 0. As a result, an undirected
weighted complete bipartite graph G(C,F,E,w) is obtained.

It is clear that the proposed reduction works in polynomial time.
Now suppose that the answer to the instance 〈X ,F ,k〉 is “yes”, i.e.
there exists a cover C ⊆ F of size k whose union is X . We claim
that the answer to the corresponding instance 〈G(C,F,E,w),n−k〉 is
“yes”. Indeed, k sets from the cover are transformed to F ′′, |F ′′|= k,
such that for every ci ∈C there exists f j ∈ F ′′,w(ci, f j) = 1. It means
that after performing the deletion of all vertices F ′ = F \F ′′, |F ′| =
n−k, at least one closest facility vertex of every customer vertex will
remain undeleted.



Conversely, suppose that a problem instance 〈G(C,F,E,w), p〉 is
solved, where p = n−k, and the answer to the instance is “yes”. As-
sume that the set of vertices F ′′ ⊆ F, |F ′′| = k, remains undeleted.
Clearly, C corresponds to X , F corresponds to F , while F ′′ corre-
sponds to a cover C , |C | = k. Therefore, the answer to the problem
instance 〈X ,F ,k〉 is “yes”.

As a result, the set cover problem is polynomial-time reducible to
P, and thus the latter problem is NP-complete. 2

The following important corollary follows from Theorem 1.

Corollary 1 Problem P∆ is NP-hard.

Proof. (Sketch) NP-completeness of simplified version
P(G(C,F,E,w), p) implies that its optimization variant
P0(G(C,F,E,w), p) is NP-hard, from which NP-hardness of
the general formulation of P∆ follows. 2

In the next section, we show how a propositional encoding of prob-
lem P∆ = (G(C,F,E,w), p,∆) can be naturally constructed based on
the proposed formulation.

4 MAXSAT FORMULATIONS
This section describes a basic encoding of the P∆ problem into maxi-
mum satisfiability6 followed by a discussion on a few improvements
to the basic MaxSAT model.

Basic Encoding. The basic model is straightforward and follows
the problem definition outlined in Section 3. It creates a partial CNF
formula ϕ , H∧S. (Recall that the hard part H contains clauses that
must be satisfied while the soft part S represents the cost function,
i.e. the optimization criterion.) Given n customers and m facilities,
formula ϕ makes use of variables y j ∈ {0,1} and zi ∈ {0,1} s.t. 1≤
j ≤ m and 1≤ i≤ n.

Formula H is represented as a conjunction H = H1∧H2 s.t.:

H1 , ( ∑
1≤ j≤m

y j = n− p) (6)

H2 ,
∧

1≤i≤n
(¬zi↔

∨
1≤ j≤m

αi jy j) (7)

It should be noted that every αi j here is a Boolean constant deter-
mined once, based on the given distances between the customers
and facilities and the value of the threshold ∆. Formula H2 encodes
that if a customer is satisfied then at least one of the relevant fa-
cilities7 should remain, and vice versa. Also, observe that H1 can
be simply represented by any of the cardinality encodings known,
e.g. see [5, 4, 1, 22, 43, 3, 38, 35].

The soft part comprises the following set of clauses:

S , {(¬zi,1) | 1≤ i≤ n} (8)

Clearly, every soft clause (¬zi,1) represents a preference to satisfy
the corresponding customer.8 Also note that each soft clause has
weight 1, i.e. each customer contributes to the cost function equally.
6 Due to the tight relationship between pseudo-Boolean (PB) solving (resp.

optimization) and SAT (resp. MaxSAT), adapting the following ideas for
constructing a PB encoding of the studied problem is straightforward. The
same holds for the integer linear programming (ILP) and constraint pro-
gramming (CP) technology.

7 As mentioned above, for each customer, the list of the relevant facili-
ties includes all the facilities that are within distance R+ ∆, where R =
min1≤k≤mwi j , i.e. R is the distance to the closest facility.

8 Customers’ demands are modeled as an optimization criterion because we
aim at maximizing the number of satisfied customers.

Example 2 Consider the problem shown in Example 1. It has 3
branches and 6 customers. This means the sets of variables used
in the encoding is {y1,y2,y3}∪{z1,z2, . . . ,z6}. Given the threshold
value ∆ = 300, we can obtain all the constants αi j:

α11 = 1, α12 = 0, α13 = 0,
α21 = 0, α22 = 1, α23 = 1,
α31 = 0, α32 = 0, α33 = 1,
α41 = 1, α42 = 0, α43 = 0,
α51 = 0, α52 = 0, α53 = 1,
α61 = 0, α62 = 1, α63 = 0.

Therefore and given that p = 1, the MaxSAT formula encoding the
problem is ϕ , H ∧S s.t.

H =



CNF(y1 + y2 + y3 = 2)
∧

(z1∨ y1) ∧ (¬z1∨¬y1) ∧
(z2∨ y2∨ y3) ∧ (¬z2∨¬y2) ∧ (¬z2∨¬y3)
(z3∨ y3) ∧ (¬z3∨¬y3) ∧
(z4∨ y1) ∧ (¬z4∨¬y1) ∧
(z5∨ y3) ∧ (¬z5∨¬y3) ∧
(z6∨ y2) ∧ (¬z6∨¬y2)


and

S =

{
(¬z1,1)∧ (¬z2,1)∧ (¬z3,1)∧
(¬z4,1)∧ (¬z5,1)∧ (¬z6,1)

}
Here function CNF() is meant to clausify the argument sum using
one of the cardinality encodings.

Although it is fairly simple and unweighted, this MaxSAT model
suffers from one significant drawback — it introduces n+m vari-
ables, where n is the number of customers while m is the number
of facilities (plus a polynomial number of auxiliary variables used
when encoding (6) to CNF). Clearly, the number of customers can
be significantly large, especially if compared with the number of fa-
cilities. This may not only result in a large number of soft clauses
that a MaxSAT solver has to deal with but it may also harden SAT
oracle calls to make by the MaxSAT solver, which is confirmed by
the experimental results shown in Section 5.

Eliminating Variables. To address this downside, one may pose a
question of whether or not it is possible either to reduce the number
of zi variables, or to dispose of them completely. The answer to this
question turns out to be positive. Indeed, from (7) it is immediate that
occurrences of variables zi in the soft clauses can be simply replaced
by the equivalent subformulas ¬(∨1≤ j≤m αi jy j).

By applying such substitution steps (7) with respect to every vari-
able zi, one may help dispose of all zi variables. As a result of such
transformation, one obtains a modified formula ϕ ′ , H1 ∧S′, which
represents an improved MaxSAT encoding of the considered prob-
lem where the modified soft subformula S′ is the following:

S′ , {(
∨

1≤ j≤m
αi jy j,1) | 1≤ i≤ n} (9)

Example 3 Consider the running example problem and its MaxSAT
encoding presented in Example 2. Applying the substitution steps (7)
leads to MaxSAT formula ϕ ′ = H1∧S′ equivalent to ϕ s.t.

S′ =
{

(y1,1) ∧ (y2∨ y3,1) ∧ (y3,1) ∧
(y1,1) ∧ (y3,1) ∧ (y2,1)

}



Aggregating Soft Clauses. Observe that although all variables zi
are now removed from the MaxSAT formula, the number of soft
clauses still equals m. However, as one can immediately observe,
further optimization of the encoding is possible due to the new con-
junction S′ of soft clauses having a significant number of duplicate
clauses (for instance, see clauses (y1,1) and also (y3,1), each appear-
ing twice).

By aggregating all l duplicates of a soft clause (
∨

1≤ j≤m αi jy j,1)
and replacing them with a unique weighted soft clause
(
∨

1≤ j≤m αi jy j, l), one can obtain a new set of weighted soft
clauses S′′ of a size much smaller than |S′|.

Example 4 Applying the reasoning above to the running example
results in the “optimized” MaxSAT formula ϕ ′′ = H1∧S′′ s.t.

S′′ =
{

(y1,2) ∧ (y2∨ y3,1) ∧
(y3,2) ∧ (y2,1)

}
Although the optimizations overviewed here might look simplis-

tic, they turn out to be a crucial factor significantly affecting the per-
formance of the MaxSAT-based approach to branch location prob-
lems, as confirmed by the experimental results in Section 5.

5 EXPERIMENTAL RESULTS
This section details the conducted experimental evaluation compar-
ing the performance of the proposed MaxSAT-based approach to the
branch location problems against the state of the art in the area [46].
The evaluation aimed at comparing (1) the performance of complete
approaches to the problem and (2) the ability of incomplete solvers
to approximate optimal problem solutions within a short period of
time.

Experimental Setup. The experiments were performed on the
StarExec cluster9. Each process was run on an Intel Xeon E5-2609
2.40GHz processor with 128 GByte of memory, in CentOS. The
memory limit for each individual process was set to 32 GByte. The
time limit used was either 1800s (for complete solvers) or 60s (for
incomplete solvers).

Benchmarks. To construct instances of the branch location prob-
lem formulated in Section 3, we used data provided by one of the
largest regional banks in Saint Petersburg, Russia. The data contains
information about 58 bank branches and approximately 850 thousand
their customers.

Following [46], the distance between a bank branch and a cus-
tomer was calculated as the minimum distance between the branch
and the customer’s points of interest, e.g. home, work, payment clus-
ters. Payment clusters were calculated by the DBSCAN clustering
algorithm [15] based on customers’ transactions. Customers transac-
tions from September 2017 to January 2019 were available for this
purpose. It turned out, that at least one point of interest is known only
for 349 562 customers. This means that distances to bank branches
could be calculated only for these customers, that is why we operated
only with them. Since branches of the bank naturally correspond to
facilities, following the notation of Section 3, we obtain the branch
location problem P∆ = (G(C,F,E,w), p,∆), where |C|= 349562 and
|F | = 58. Based on the described data, we considered instances for
each p ∈ {1, . . . ,29}. Also, ∆ varied from 100 to 500 meters, with
increments of 100 meters. In total, 145 instances of the branch lo-
cation problem were considered. For each of them, two benchmark

9 https://www.starexec.org/

instances were generated using the original (also referred to as sim-
plistic or ordinary) and optimized MaxSAT encodings described in
Section 4.

Figure 2 shows the number of variables and clauses in the gener-
ated instances. The x-axis shows instances’ indices, where the first
five of them represent problem instances for p = 1 and ∆ from 100
to 500 with increments of 100, the next five indices correspond to
p = 2 and ∆ from 100 to 500 with increments of 100, and so on. As
can be seen in the figure, the number of variables (clauses) in the
ordinary instances is always close to the number of customers (two
times greater than the number of customers). Also, one can observe
that the optimized instances are dramatically smaller.
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Figure 2: Comparison of original and optimized encodings by the
number of variables and clauses in th generated instances. The y-axis
is shown in the logarithmic scale.

Benchmark instances generated this way are different from those
studied in [46]. The differences are the following: (i) the new bench-
marks reflect more information on customers transactions, customer
payment clusters (and so bank-to-customer distances) including four
more months of observations, thus, representing user data more accu-
rately. (ii) the new benchmarks consider all 58 bank branches, which
was not the case in [46] where two subsets of size 17 and 51 were
considered. (iii) a constant value of ∆ equal to 200 meters was con-
sidered in [46]; and (iv) p ∈ {1, . . . ,10} was considered in [46]. As
a result, [46] analyzed only 20 problem instances in contrast to the
current evaluation having 145 instances. Furthermore and given the
above, most of the newly constructed 145 instances are more chal-
lenging and, thus, more interesting from the practical perspective.
This is because all benchmarks considered in the present study en-
code instances of a real practical problem. The solutions obtained
(especially for the large values of p that were not studied earlier
in [46]) are of particular interest for the bank that provided us with
the data. The reason is that the bank aims at significantly reducing
the network of its branches in order to decrease the operational costs
involved.

Solvers. The MaxSAT approach proposed in the paper was as-
sessed using the state-of-the-art MaxSAT solvers that were top-
ranked at MaxSAT Evaluation 2019 10. These include 3 complete
MaxSAT solvers: RC2 [25, 26], MaxHS [13], and UWrMaxSat [37].
While RC2 and UWrMaxSat exploit core-guided algorithms [34],
MaxHS builds on implicit hitting set enumeration [10]. Addition-
ally, three best performing (according to MaxSAT Evaluation 2019)

10 https://maxsat-evaluations.github.io/2019/

https://www.starexec.org/
https://maxsat-evaluations.github.io/2019/
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Figure 3: Cactus plots showing the results on the considered benchmark set.

incomplete MaxSAT solvers were selected: Loandra [6], LinS-
BPS [14], and SatLike [30]. All complete and incomplete solvers
were ran on problem instances encoded with the original and opti-
mized MaxSAT encodings described in Section 4. In the following,
the name of each MaxSAT solver dealing with the optimized encod-
ing is augmented with an asterisk, e.g. Name?.

As the state-of-the-art approach, three solvers from [46] were con-
sidered. The first one is referred to as BF1 and implements a brute
force algorithm and, hence, is a complete approach. The other two
solvers, referred to as Greedy1 and Greedy1+SHC, are incomplete.
While the former solver represents a greedy algorithm the latter im-
plements a combination of the greedy algorithm with the simple hill
climbing algorithm [41]. The following needs to be mentioned with
respect to the implementation of BF1, Greedy1, and Greedy1+SHC.
To calculate the number of potentially dissatisfied customers, a list
of the relevant branches is required for every customer. Note, that
such a list for customer i corresponds to bank branches 1 ≤ j ≤ m
for which αi j = 1 (see Section 3). As in [46], the implementations of
BF1, Greedy1, and Greedy1+SHC construct such lists every time a
set of bank branches (candidates for closure) is given.

Note that in contrast to these solvers, the MaxSAT encodings pro-
posed in Section 4 exploit the idea that given a customer, such a
list is constructed only once. Inspired by these insights, we also im-
proved all solvers from [46]. This resulted in new solvers being cre-
ated, namely BF2, Greedy2, and Greedy2+SHC, respectively, that
are also considered in the following evaluation.

Results. Figure 3 shows two cactus plots depicting the results of
the performed experimental assessment. First, let us focus on the per-
formance of the complete solvers shown in Figure 3a. Observe that
MaxSAT solvers dealing with the optimized encoding significantly
outperform all the other competitors. Concretely, the best perfor-
mance is demonstrated by UWrMaxSat?, which solves 76 instances
(out of 145). RC2-A? comes second with 72 instances solved. RC2-
B? and MaxHS? solve 70 and 72 benchmarks, respectively. Also, it is

Table 1: Detailed performance of the complete solvers tested.
Columns 2–5 represent the number of instances solved per solver
within the given number of seconds. Also note that each value shown
in column i ∈ {3,4,5} represents the sum of the respective number
of instances solved and the value shown in column i−1.

Solver by 10sec by 100sec by 1000sec by TO unsolved

BF1 0 5 5 5 140
BF2 0 5 10 10 135

MaxHS 0 5 5 5 140
MaxHS? 3 20 60 72 73

RC2-A 0 10 19 23 117
RC2-A? 28 59 69 72 73

RC2-B 0 2 6 10 135
RC2-B? 21 59 68 70 75

UWrMaxSat 0 2 8 11 134
UWrMaxSat? 53 60 72 76 69

not surprising that the original brute force solver BF1 demonstrates
the worst performance among all the competitors and can cope with
5 instances only. What is surprising, however, is that MaxHS work-
ing with the original problem encoding performs the same way. Al-
though this phenomenon is yet to be explained, our intuition is that
MaxHS is “confused” by the majority of variables representing the
customers, which affects the number of iterations of the hitting set al-
gorithm, and those variables are redundant (note that are not present
in the optimized encoding). The improved version BF2 is more capa-
ble and its efficiency is on par with RC2-B and UWrMaxSat dealing
with the original problem encoding. Concretely, BF2 is able to suc-
cessfully deal with 10 instances while RC2-B and UWrMaxSat solve
10 and 11 benchmarks, respectively. Note that RC2-A performs bet-
ter and manages to solve 23 instances. This can be explained by the
fact that it does not apply heuristic unsatisfiable core minimization
used in RC2-B and UWrMaxSat and, instead, employs unsatisfiable
core trimming [26]. Detailed information on the number of instances



solved by each solver by 10, 100, 1000 seconds, timeout, as well as
the number of unsolved instances is provided in Table 1.

It turned out, that the greater the values of p and ∆ are, the more
difficult the benchmarks become. For instance, UWrMaxSat?, which
is the best performing complete solver, solved the instances gener-
ated for all combinations of values of ∆ (100, 200, 300, 400, 500)
and 1≤ p≤ 13; for p = 14, it managed to solve instances for all val-
ues of ∆ except for 500; for p= 15, it successfully dealt with ∆= 100
and ∆ = 200 while for 16≤ p≤ 20, it could only cope with ∆ = 100.
Note that none of the instances generated for p≥ 21 were solved.

The second part of the experiment consists of comparing approxi-
mation quality obtained by various incomplete solvers within 60 sec-
onds. The rationale here is that in many practical settings (e.g. see
[24]), it may be too expensive for a user to wait for a long time, for
instance for a half-an-hour, before obtaining an exact solution and it
makes sense, instead, to settle for a reasonable approximation if can
be computed in a short period of time.

In order to assess the quality of approximate solutions reported by
incomplete approaches, a specific virtual best solver (VBS) was con-
structed. If any of the complete solvers compute the cost of the exact
optimal solution for a given instance, the VBS is set to replicate this
optimal solution. Note that out of 145 instances, the complete solvers
alltogether manage to solve 82 instances, i.e. for each of these 82
instances the exact optimal solution is known, which facilitates the
assessment of incomplete approaches. For the remaining 63 prob-
lem instances, the VBS computes the smallest cost solution among
the approximate solutions reported by all the considered incomplete
approaches.

Figure 3b shows a cactus plot depicting the quality of solutions
for all incomplete approaches. For a benchmark instance, if the VBS
cost is denoted by costvbs and the approximate solution cost reported
by an incomplete solver is denoted by cost, the quality of this ap-
proximate solution is expressed as the formula cost−costvbs

costvbs
. Hence,

each line shown in Figure 3b essentially illustrates the dynamics of
the normalized error value for the approximate solution per solver,
given the VBS.

Observe that BF1, Greedy1, and Greedy+SHC do not appear in
the plot. The reason is that they do not report solutions for any of
the instances within 60 seconds. Also note that the quality of solu-
tions reported by MaxSAT solvers dealing with the optimized en-
coding is extremely good. Indeed, the average error for LinSBPS?

and SatLike? is around 0.1 and does not go above 1. This means that
the cost of the solutions reported by these solvers is at most twice
as large as the VBS cost and on average it is greater than the VBS
cost by 10%. Moreover, the best solution quality is demonstrated
by Loandra?, whose solutions contribute to the VBS most of the
time (concretely, for 129 instances). Finally, for the remaining 16
instances, the solutions of Loandra? are never worse than the VBS
solutions by more than 10%. The detailed statistics on the correla-
tion between the number of instances and how far the computed cost
for these instances per solver is from the VBS cost is provided in
Table 2.

Regarding the MaxSAT solvers dealing with the original encoding,
the average error is around 100%, i.e. their cost typically doubles the
VBS cost. It is an interesting result, which is yet to be understood. As
for the BF2, Greedy2, and Greedy2+SHC the cost of their solutions
is good for the 60 instances while for the remaining 85 instances they
are unable to compute any approximation.

Summary. The experimental evaluation presented in this section
confirms the practicality of the proposed MaxSAT-based approach
for the branch location problem, in terms of complete problem solv-

Table 2: Analysis of the cost obtained by the incomplete solvers com-
pared to the VBS cost.

Solver Number of instances with cost≤ (1+ k)× costvbs s.t.
k = 0 k = 0.001 k = 0.01 k = 0.1 k = 1 k = 10

Greedy1 0 0 0 0 0 0
Greedy1+SHC 0 0 0 0 0 0

Greedy2 56 56 58 60 60 60
Greedy2+SHC 56 56 58 60 60 60

LinSBPS 8 8 8 8 122 145
LinSBPS? 42 45 50 110 145 145

Loandra 12 12 12 14 134 145
Loandra? 129 132 140 145 145 145

SatLike 7 7 7 7 110 145
SatLike? 51 55 58 71 145 145

ing but also in terms of effective solution approximation. Both com-
plete and incomplete MaxSAT solvers are shown to significantly out-
perform their counterparts representing the current state of the art
in the area (including the improved variants of the state-of-the-art
solvers). Furthermore, from the practical point of view, the results
shown illustrate a good trade-off between exact and approximate
solvers and open a number of possibilities to combine complete and
incomplete solving for the branch location problems.

6 CONCLUSIONS

Facility location problems are representative of the field of location
science [29]. Despite the wide range of practical applications, and to
our best knowledge, constraint-based solutions for facility location
problems are mostly non-existent. This paper investigates the con-
crete case of branch location problems [46], a special case of budget-
constraint location [45]. The paper shows that a simple encoding of
branch location into MaxSAT is competitive in practice when com-
pared with recently proposed approaches, either based on brute force
search and or incomplete greedy solutions [45]. Nevertheless, the in-
sights revealed by this effort served to devise changes to the basic
model, which enable practical MaxSAT solvers to perform well in
practice, extensively outperforming existing solutions.

The modeling insights revealed by this work can be used in other
settings, and so a natural line of work will be to identify other facil-
ity location problems where similar modeling solutions also enable
MaxSAT solvers to excel. Moreover, since the proposed techniques
are independent of the concrete problem being solved, another line
of work will be to investigate settings where the work in the paper
can also be applied. Finally, a natural line of work would be making
a comparison of the proposed MaxSAT approach with the PB, ILP
and CP technology as the corresponding problem encodings can be
easily constructed based on the proposed ideas.
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