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Abstract. In the present paper, we propose a technology for translating algorithmic
descriptions of discrete functions to SAT. The proposed technology is aimed at applications
in algebraic cryptanalysis. We describe how cryptanalysis problems are reduced to SAT
in such a way that it should be perceived as natural by the cryptographic community.
In the theoretical part of the paper we justify the main principles of general reduction to
SAT for discrete functions from a class containing the majority of functions employed in
cryptography. Then, we describe the Transalg software tool developed based on these
principles with SAT-based cryptanalysis specifics in mind. We demonstrate the results of
applications of Transalg to construction of a number of attacks on various cryptographic
functions. Some of the corresponding attacks are state of the art. We compare the functional
capabilities of the proposed tool with that of other domain-specific software tools which
can be used to reduce cryptanalysis problems to SAT, and also with the CBMC system
widely employed in symbolic verification. The paper also presents vast experimental data,
obtained using the SAT solvers that took first places at the SAT competitions in the recent
several years.
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Introduction

The state-of-the-art algorithms for solving the Boolean satisfiability problem (SAT) are
successfully used in many practical areas including symbolic verification, scheduling and
planning, bioinformatics, network science, etc. In the recent years, a growth of interest to
applications of SAT in cryptanalysis is observed. The corresponding results are covered in,
e.g., [Mas99, MM00, LM03, MZ06, DKV07, CB07, EM09, Bar09, SNC09, SZBP11, CGS12,
Nos12, Cou13, Cou15, SZ16, Sto16, NNS+17, NLG+17, SZO+18].

SAT-based cryptanalysis implies two stages: on the first stage a SAT encoding of a
considered cryptanalysis problem is constructed. On the second stage the obtained SAT
instance is solved using some SAT solving algorithm. The success on the second stage is not
guaranteed because SAT is an NP-hard problem, and also due to the fact that the hardness
of cryptanalysis problems is usually preserved during their translation to SAT form [CM97].
Despite an impressive progress in the development of applied algorithms for solving SAT,
the majority of cryptanalysis problems remain too hard even for cutting edge SAT solvers.

Meanwhile, the first stage is guaranteed to be effective for most cryptanalysis problems,
at least in theory. It follows from the fact that cryptographic transformations are usually
designed to be performed very fast. To reduce some cryptanalysis problem to SAT, one has
to perform the so-called propositional encoding of a corresponding function. In practice, this
task is quite nontrivial because modern cryptographic algorithms are constructed from a
large number of basic primitives. Often, a researcher has to carry out a substantial amount of
manual work to make a SAT encoding for a considered cipher due to some of its constructive
features or because of specific requirements of an implemented attack.

There are two main classes of tools that can be used to automatically reduce a cryptanal-
ysis problem to SAT. First, one can use one of the several available domain-specific systems.
Among them we would like to mention SAW [CFH+13] that can operate with the Cryptol
language [LM03, EM09, ECW09] designed for specifying cryptographic algorithms. Another
system that allows to reduce cryptanalysis problems to SAT (albeit with some additional
steps) is the URSA system [Jan12]. Finally, it is possible to use the Grain-of-Salt tool
[Soo10] to construct SAT encodings of cryptographic functions from a limited class, formed
by keystream generators based on feedback shift registers. Another approach to reducing
cryptanalysis problems to SAT consists in using generic systems for symbolic verification in
the form of Bounded Model Checking [BCCZ99, BCC+99, CKL04]. For example, one can
employ the CBMC system [CKL04, Kro09] or LLBMC system [SMF12].

Both generic systems and domain-specific systems have their pros and cons. On the one
hand, generic systems usually support widely employed programming languages, such as C,
and therefore it is easy to adapt an existing implementation of a cryptographic function to
such a tool. They also have a wide spectrum of applications, are well supported and have a
good documentation. On the other hand, while domain-specific tools may lack in convenience
of use, their languages are often purposefully enriched (compared to generic languages) by
instructions and data types that improve their ability to deal with cryptographic functions.
For example, such instructions and data types may allow them to work with bits directly, or
to implement specific cryptographic attacks, such as guess-and-determine attacks [Bar09],
attacks based on differential paths (e.g., the ones from [WLF+05, WY05]), etc.

In the present paper, we introduce a new software tool designed to encode algorithms
that specify cryptographic functions to SAT. It is named Transalg (from TRANSlation
of ALGorithms). Transalg uses a domain-specific language called TA language. The TA
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language is formed from a subset of the C language. It is designed to be much simpler
and to avoid platform-dependent or undefined behavior. The language is extended by
several specific data types and instructions that often allow Transalg to tackle common
cryptanalysis tasks better than competition. In particular, the TA language has a specific
bit data type to represent a single bit of data and supports bit arrays of arbitrary size.
This allows Transalg to reduce the redundancy of constructed propositional encodings
and better preserve the structure of an original problem. The Transalg basic concept
implies that a cryptographic function is interpreted starting from its input and ending with
its output. Thus, the language has specific directives to declare variables and arrays as input
and output ones. As a result, the first variables in the constructed SAT encoding always
correspond to function’s input, and the last ones – to its output. Transalg eliminates all
the auxiliary variables that do not depend on input and do not influence the output, and
uses minimization (in the form of Espresso logic minimization tool [BSVMH84]) during
the construction of propositional encodings to reduce their size. The TA language also
uses several specific constructions that make it easier for Transalg users to employ the
constructed SAT encodings for implementing cryptographic attacks in the SAT context. In
the present paper, we describe the Transalg tool and its theoretical foundations in detail,
compare it with competition and show its capabilities in application to cryptanalysis of
several cryptographic systems which are currently used or have been used in recent past.

Let us give an outline of the paper. In Section 1, we briefly touch the basics of the
Boolean satisfiability problem. In Section 2, we give the theoretical foundations of SAT-based
cryptanalysis. Here we discuss several features of the procedures for translating programs
defining discrete functions to SAT. As we show below, they are particularly important in
the context of cryptographic applications. Also in the same section we discuss the main
theoretical results that form the basis of the software tool that performs effective reductions
of inversion problems of discrete functions to SAT. This software tool named Transalg is
described in Section 3. In Section 4, we compare the functionality of Transalg with that of
other software tools which can be used to encode cryptographic problems to SAT: CBMC;
SAW; URSA; Grain-of-Salt. In Section 5, we describe SAT-based attacks on several
relevant cryptographic functions. The corresponding SAT encodings were constructed using
Transalg. It should be noted that some of the described attacks are currently the best
known. Section 6 contains a brief review of related works.

The present paper is an extended version of the report [OSG+16] presented at the
ECAI 2016 conference. The sources of Transalg are available at [OGS]. The examples of
Transalg programs for various cryptographic primitives can be found at [OGZS]. All the
instances considered in Section 4 are also available online at [OGZ+].

1. The Boolean satisfiability problem and algorithms for its solving
used in cryptanalysis

The Boolean satisfiability problem (SAT) is a decision problem, in which for an arbitrary
Boolean formula F it is necessary to decide whether there exists such truth assignment for
its variables on which formula F takes the value of True. Hereinafter, let us denote values
True and False by 1 and 0, respectively. It can be shown that SAT for an arbitrary Boolean
formula F can be effectively (in polynomial time in the size of description of F ) reduced to
SAT for a formula in a Conjunctive Normal Form (CNF). Hereinafter, we will consider SAT
exactly in this sense. Also, below we view SAT not only as a decision problem but also as
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the corresponding search problem: if CNF C is satisfiable to find any truth assignment that
satisfies C.

The decision variant of SAT is NP-complete [Coo71], while the search variant is NP-hard
[GJ79]. Nevertheless, during the last three decades several highly effective practical SAT
solving algorithms were developed, driven by numerous applications in various areas of
science. The detailed information on SAT and the algorithms for its solving can be found in
the book [BHvMW09].

In the present paper, we consider the applications of SAT solving algorithms to crypt-
analysis problems, in particular to the problem of finding a preimage of a cryptographic
function given its image. It can be viewed as a problem of finding solutions of a system of
algebraic equations which interconnect ciphering algorithm’s steps. Lately, the direction
of research in which a cryptanalysis problem is viewed in the general context of the prob-
lem of solving algebraic equations is often referred to as algebraic cryptanalysis [Bar09].
As it will be shown below, from an algebraic system or even from an algorithm defining
such function one can effectively transition to SAT. There is a number of examples when
valuable results in algebraic cryptanalysis were obtained thanks to the use of SAT solvers:
[MZ06, CGS12, CB07, Cou13, DKV07, Bar09, SNC09, SZBP11] and several others. The
particular area of algebraic cryptanalysis which employs SAT solvers is known as SAT-based
cryptanalysis.

There are no theoretical results that would demonstrate advantage of some algorithms
for solving SAT-based cryptanalysis instances over others. However, based on a large number
of papers (both cited above and below) one can conclude that CDCL SAT solvers [MSLM09]
suit best for solving such problems. The construction of first effective CDCL SAT solvers was
the result of a deep modernization of the well-known DPLL algorithm [DLL62, DP60], which
was undertaken in [MSS96, MS99, MMZ+01, ZMMM01, ES04]. After this, CDCL-based
SAT solvers became de facto algorithmic tools for solving computational problems in a
number of areas, first and foremost, in symbolic verification [BCCZ99, BCC+99, BCC+03,
PBG05, MS08], etc. The computational potential of CDCL in application to cryptanalysis
problems was realized approximately in the middle of 2000-s. As it was noted above, to the
present day a lot of papers have been published, in which CDCL SAT solvers were applied
to cryptanalysis problems. The short review of the most prominent results in this direction
will be given in Section 6.

2. Theoretical foundations of SAT-based cryptanalysis

As mentioned above, SAT-based cryptanalysis is an area of algebraic cryptanalysis (see
[Bar09]), in which SAT solvers are used to solve equations that connect the input of a
cryptographic algorithm with its output. A cryptanalysis problem involves searching for
a preimage of a known image of a considered function (in this case, the term preimage
attack is also used). In some cases, it is necessary to find several inputs, the outputs of
which satisfy some additional constraints. Such constraints are used, for example, in the
problem of finding collisions of cryptographic hash functions. Hereinafter, we refer to all
these problems using the general term inversion problems.

In this section, we provide theoretical foundations of SAT-based cryptanalysis. In partic-
ular, we look into the construction of a Boolean formula that encodes a considered inversion
problem. Below we follow the methodology of symbolic execution and in particular, Bounded
Model Checking.
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Symbolic Execution [Kin76] is a technique that associates with a program for a computer
or for an abstract machine some symbolic expressions, usually Boolean formulas. Bounded
Model Checking involves applying automated reasoning and combinatorial algorithms to a
Boolean expression associated with a finite state system to prove some properties of such
system [BCC+03]. From our point of view this approach best fits the problem of constructing
SAT encodings for inversion of discrete functions in general, and for cryptographic functions
especially.

Hereinafter, denote by {0, 1}n the set of all possible binary words of length n. By {0, 1}+
we denote the set of all binary words of length n = 1, 2, . . .. Let us consider functions of the
kind

f : {0, 1}+ → {0, 1}+, (2.1)

i.e. functions that map arbitrary binary words into binary words. Additionally, we assume
that each function of the kind (2.1) is defined everywhere on {0, 1}+ (i.e. is total) and is
specified by a Turing machine program A(f), the complexity of which is bounded by a
polynomial in the length of an input word. A program A(f) specifies an infinite family of
functions of the kind

fn : {0, 1}n → {0, 1}+, n = 1, 2, . . . (2.2)

It is clear that for an arbitrary n = 1, 2, . . . it follows that Domfn = {0, 1}n. Hereinafter,
to functions (2.1) and (2.2) we refer as discrete functions.

Definition 2.1. For a discrete function f of the kind (2.1) the problem of its inversion
consists in the following. Given A(f), for an arbitrary n = 1, 2, . . . and arbitrary y ∈ Range fn
to find such x ∈ {0, 1}n that fn(x) = y.

It is quite easy to give examples of cryptanalysis problems that can be naturally
formulated in the context of inversion problems of corresponding functions. The main terms
related to cryptography that we use below can be found, for example in [MVO96].

In our first example, suppose that given a secret key x ∈ {0, 1}n, fn generates a
pseudorandom sequence (generally speaking, of an arbitrary length) that is later used to
cipher some plaintext via bit-wise XOR. Such a sequence is called a keystream. Knowing
some fragment of plaintext lets us know the corresponding fragment of keystream, i.e. some
word y for which we can consider the problem of finding such x ∈ {0, 1}n that fn(x) = y.
Regarding cryptographic keystream generators, this corresponds to the so called known
plaintext attack.

Let us give another example. Total functions of the kind f : {0, 1}+ → {0, 1}c, where c
is some constant, are called hash functions. If n is the length of an input message, and n > c,
then there exist such x1, x2, x1 6= x2 that fn(x1) = fn(x2). Such a pair x1, x2 is called a
collision of a hash function f . A cryptographic hash function is considered compromised if
one is able to find collisions of that function in reasonable time.

For an arbitrary function of the kind (2.1) there exists an effective in theory procedure
for reducing the problem of its inversion to SAT. Essentially, it follows from the Cook-Levin
theorem, and to prove it one can use any known technique, e.g., from [Coo71] or [Gol08].
Below we briefly review the main techniques used to prove statements of such a kind. They
play a crucial role in understanding basic principles that serve as a foundation of our software
tool for translating algorithmic descriptions of discrete functions to SAT, which we describe
in the following sections.

So, let us fix n and consider an arbitrary function of the kind (2.2). Since the runtime of
a program defining the corresponding function is finite for any x ∈ {0, 1}n, we can consider
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this function in the following form:

fn : {0, 1}n → {0, 1}m. (2.3)

It can be specified by a Boolean circuit S(fn) over an arbitrary complete basis. Hereinafter,
we use the basis {∧,¬}. On the current stage, assume that we are given a circuit S(fn).
Note that it has n inputs and m outputs. Let us fix some order on the sets of inputs and
outputs of S(fn). With each input of S(fn) we associate a Boolean variable. Denote the
obtained ordered set of variables by X = {x1, . . . , xn}. We will say that X encodes the
input of function fn. Similarly, let us encode the output of fn via the Boolean variables
forming the ordered set Y = {y1, . . . , ym}.

For a circuit S(fn) in linear time in the number of nodes in S(fn) we can construct a
CNF denoted by C(fn). The corresponding algorithm traverses each inner node of a circuit
exactly once. With each gate G ∈ {∧,¬} it associates an auxiliary variable v(G) from the
set V : V ∩X = ∅. For an arbitrary v(G) a CNF C(G) is then constructed which uses at
most 3 Boolean variables. The exact representation of C(G) depends on the gate G. The
result of this process is the CNF:

C(fn) =
∧

G∈S(fn)

C(G). (2.4)

The described technique of constructing a CNF for a circuit S(fn) is known as Tseitin
transformations [Tse70].

Definition 2.2. To CNF C(fn) of the kind (2.4) we further refer as template CNF encoding
the algorithm that specifies function fn, or in short template CNF for fn.

Let u be an arbitrary Boolean variable. Below we will use the following notation: by
lλ(u), λ ∈ {0, 1} denote literal ¬u if λ = 0, and literal u if λ = 1. Let C(fn) be a template
CNF for fn. Now let x = (α1, . . . , αn) and y = (γ1, . . . , γm) be arbitrary truth assignments
from {0, 1}n and {0, 1}m, respectively. In other words, let us consider x = (α1, . . . , αn) as
an assignment of variables from X = {x1, . . . , xn}, and y = (γ1, . . . , γm) as an assignment of
variables from Y = {y1, . . . , ym}. Consider the following two CNFs:

C(x, fn) = lα1(x1) ∧ . . . ∧ lαn(xn) ∧ C(fn),
C(fn, y) = C(fn) ∧ lγ1(y1) ∧ . . . ∧ lγm(ym).

For many practical applications of SAT and, in particular, to describe many cryptographic
attacks studied in algebraic cryptanalysis (see, e.g., [SZO+18]) the following fact plays a
very important role.

The application of only the Unit Propagation rule [DG84, MSLM09] to CNF C(x, fn)
for a particular x = (α1, . . . , αn) results in the derivation of values for all remaining
variables, including that of variables from Y : y1 = γ1, . . . , ym = γm, such that fn(x) = y,
y = (γ1, . . . , γm).

This property was several times used in other papers (see, e.g., [JJ09, JBH12, SZ15]).
Its proof in a very similar formulation can be found in [BKNW09]. Essentially, it follows
from the fact that the set X in C(fn) is a Strong Unit Propagation Backdoor Set (SUPBS)
[WGS03].

The following statement is a variant of the Cook-Levin theorem in the context of the
problem of inverting functions of the kind (2.3). The basic steps of its proof are standard
and can be found, for example, in [Gol08]. However, from our point of view there are several
technical issues that should be clarified for better understanding of how the software tool
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described below works with data. That is why we present the short proof of this statement
detailing only the features that play an important role in the context of this study.

Theorem 2.3. Let f be an arbitrary function of the kind (2.1). Then there exists an
algorithm A′ such that given as an input a program A(f), a number n (in unary form),
and a word y ∈ {0, 1}+, in polynomial time it constructs a CNF C(fn, y) with the following
properties:

(1) For y /∈ Range fn the CNF C(fn, y) is unsatisfiable.
(2) For y ∈ Range fn the CNF C(fn, y) is satisfiable and from any of its satisfying assign-

ments one can extract such a word x ∈ {0, 1}n that fn(x) = y.

Sketch proof. Assume that the program A(f) is executed on the Turing machine, described in
[GJ79], which works only with binary data. By algorithm A′ we mean the informal procedure
that constructs a circuit S(fn) based on the text of a program A(f) and a number n.

Note that the transition function in the machine from [GJ79] looks as follows:

δ : (q, θ)→ (q′, θ′, s), (2.5)

where θ ∈ {0, 1, ∅} is an input symbol, q ∈ Q – an arbitrary state and s is a variable
that defines the direction in which the head of the Turing machine is going to shift, i.e.
s ∈ {−1, 0,+1}. The function (2.5) describes the execution of one elementary command.

Let us consider the execution of program A(f) as a sequence of time moments, such that
during the transition from one time moment to another exactly one elementary command is
executed. The moment t = 0 corresponds to a starting configuration. With each moment t
we associate the set of Boolean variables Xt, Xi ∩Xj = ∅ if i 6= j. With the transition from
t to t+ 1 we associate a formula

Ψt→t+1 =
∨
(q,θ)

Φ
(q,θ)
t→t+1. (2.6)

An arbitrary formula Φ
(q,θ)
t→t+1 is a formula of the kind

φt(q, θ)⇒ φt+1(q
′, θ′),

(here by ⇒ we denote logical implication), which is constructed in the following manner.
The formula φt(q, θ) is a conjunction of literals over the set Xt that encodes a particular
pair (q, θ) and also the state of the head of the Turing machine at the moment t. The
formula φt+1(q′, θ′) is the conjunction of literals over the set of Boolean variables Xt+1 that
encodes a pair (q′, θ′) and the state of the head corresponding to the triple (q′, θ′, s). The
correspondence between (q, θ) and (q′, θ′, s) is defined by the transition function (2.5). In
(2.6) the disjunction is performed over all possible pairs (q, θ) in the program A(f).

It is very important to note that the cardinality of Q does not depend on n. Therefore,
the size of the formula Ψt→t+1 is a constant that does not depend on n. Omitting some
details, let us note that from the above a formula Ψt→t+1 defines a function

Ft→t+1 : {0, 1}|Xt| → {0, 1}|Xt+1|,

which can also be specified using Boolean circuit S(Ft→t+1) over the basis {∧,¬}, which
has |Xt| inputs and |Xt+1| outputs. The sets Xt and Xt+1 are the sets of input and output
variables of a circuit S(Ft→t+1), respectively, and Xt+1 is the set of input variables of circuit
S(Ft+1→t+2).

Let t(n) be the upper bound on the runtime of the program A(fn) over all inputs from
{0, 1}n. By combining the circuits S(Ft0→t1), . . . , S(Ft(n)−1→t(n)) according to the above we
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construct the circuit, for which it is easy to see that it specifies the function fn of the kind
(2.3). This circuit is S(fn).

Let us construct the template CNF C(fn) for the circuit S(fn). Let y be an arbitrary
assignment from {0, 1}m. Consider a CNF C(fn, y). Now we use the property mentioned
above and conclude that X is a SUPBS in C(fn, y). Thus it follows that the points (1) and
(2) from the Theorem formulation are valid.

We would like to give some additional comments regarding the Theorem 2.3. Using the
properties of the Tseitin transformations it is easy to show that the reduction presented in
the Theorem 2.3 is parsimonious [GJ79], i.e. the number of assignments that satisfy CNF
C(fn, y), y ∈ Range fn, is equal to the number of preimages of y. For further purposes it will
be enough for us to find at least one preimage of y ∈ Range fn. It should be noted that the
values of variables from X in an arbitrary satisfying assignment of C(fn, y), y ∈ Range fn,
specify a preimage of y. This follows directly from the fact that X is SUBPS for C(fn, y).
Indeed, let α be a satisfying assignment of C(fn, y) and x = (α1, ..., αn) be an assignment of
variables from X extracted from α. Suppose that x is not a preimage of y. Then, since X is
SUPBS, the application of UP to CNF

lα1(x1) ∧ . . . ∧ lαn(xn) ∧ C(fn, y)

should lead to a conflict. Thus, we have a contradiction with the fact that x is a part of the
assignment that satisfies C(fn, y).

Based on the Theorem 2.3, let us formulate the general concept of SAT-based crypt-
analysis. Assume that we have a function f of the kind (2.1), and consider a problem of
finding a preimage of a particular y ∈ Range fn for a fixed n. Then, using Theorem 2.3 we
construct CNF C(fn, y). From any satisfying assignment of C(fn, y) it is easy to extract
such x ∈ {0, 1}n that fn(x) = y.

As a concluding remark we would like to note that an input word from {0, 1}n, employed
by the procedure used in the proof of Theorem 2.3 to transition from a program A(f) to a
template CNF C(fn), is not constrained in any way. In fact, this procedure takes Boolean
variables x1, . . . , xn as an input and outputs C(fn), thus essentially performing symbolic
execution.

3. Transalg: software tool for encoding algorithmic descriptions
of discrete functions to SAT

In the present section, we describe the Transalg software tool that in essence implements
the translation procedure for transforming algorithmic descriptions of functions of the kind
(2.3) to SAT, which was outlined in Theorem 2.3. The only conceptual difference is that
instead of the Turing machine Transalg uses an abstract machine with random access to
memory cells.

Transalg takes as an input an algorithm that specifies a discrete function in a special
TA language. Then it uses this description to construct a symbolic representation of the
algorithm (in the sense of symbolic execution). We refer to the obtained representation as to
propositional encoding. The propositional encoding is first built as a set of Boolean formulas,
and then can be transformed to the DIMACS CNF format or the AIGER format [Bie07].

In Transalg the process of computing a value of a discrete function fn is represented
as a sequence of elementary operations with memory cells of an abstract machine. Each
memory cell contains one bit of information. Any elementary operation o over data in
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memory cells is essentially a Boolean function of arity k, k ≥ 1, where k is some constant that
does not depend on the size of input (strictly speaking, it is possible to consider k ∈ {1, 2}).
For example, if o has the arity of 2 then the result of application of o to data in memory
cells c1 and c2 is one bit that is written to memory cell c3. However, during the construction
of a propositional encoding Transalg does not use the real data. Instead, it links with
the cells c1, c2, c3 the Boolean variables v1, v2 and w, respectively. Then it associates with
operation o the Boolean formula

w ≡ φo(v1, v2), (3.1)

where φo(v1, v2) specifies a function o. For an arbitrary formula of the kind φo(v1, v2), we
represent the corresponding function as a Boolean circuit. Transalg can work with different
basis functions, but in the most simple case it can construct a circuit over {∧,¬}.

3.1. TA language. To describe discrete functions, Transalg uses a domain specific
language called TA language. The TA language has a C-like syntax and block structure.
An arbitrary block (composite operator) is essentially a list of instructions, and has its own
(local) scope. In the TA language one can use nested blocks with no limit on depth. During
the analysis of a program, Transalg constructs a scope tree with the global scope at its
root. Every identifier in a TA program belongs to some scope. Variables and arrays declared
outside of any block and also all functions belong to the global scope and therefore can be
accessed in any point of a program.

A TA program is a list of functions. The main function is the entry point and, thus,
must exist in every program. The TA language supports basic constructions used in
procedural languages (variable declarations, assignment operators, conditional operators,
loops, function calls, etc.), various integer operations and bit operations including bit shifting
and comparison.

Similar to most symbolic execution systems, Transalg supports loops with fixed length
and processes them via unwinding. It also supports conditional operators with any depth of
nesting. On the level of ideas the corresponding solutions do not differ from those employed
in symbolic verification systems, such as CBMC (see, e.g., [Kro09]). Briefly, the processing
of a conditional operator is based on the following considerations. Each conditional operator
of the kind if then else is associated with two arrays R1 and R2 in the memory of an
abstract computing machine. The contents of these arrays represent two alternatives for
data that will be in the memory of the machine after executing the conditional operator.
With the cells of arrays R1 and R2 we first associate the encoding variables. Each encoding
variable encodes the Boolean value that is the result of execution of this conditional operator.

The main data type in the TA language is the bit type, which can be used to specify
arrays of bits of an arbitrary finite length. Transalg uses this data type to establish links
between variables used in a TA program and Boolean variables included into a corresponding
propositional encoding. It is important to note that Transalg does not establish such links
for variables of other types, in particular int and void, which are used as service variables,
e.g., as loop counters or to specify functions that do not return any value. We will refer to
variables that appear in a TA program as program variables. All variables included in a
propositional encoding are called encoding variables. Given a TA program A that specifies
fn, Transalg constructs a propositional encoding of fn. Below we will refer to this process
as to the translation of the TA program A.

Declarations of global bit variables can have the in or the out attribute. The in

attribute marks variables that correspond to algorithm’s input. The out attribute marks
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variables that correspond to algorithm’s output. Local bit variables cannot be declared with
these attributes. Note, that the TA language strictly fixes the order in which it introduces
Boolean variables to all steps of a considered algorithm. It means that the variables encoding
algorithm’s input are always numbered from 1 to n, where n is the length of input in bits.
The variables corresponding to output are always represented by the last m variables in an
encoding, where m is the length of output in bits. Thus if necessary it is possible to exactly
and explicitly associate input and output of an algorithm with the corresponding Boolean
variables in a CNF (e.g., when manually invoking a SAT solver and processing its output).

3.2. Techniques aimed at reducing the redundancy of propositional encodings.
In the process of symbolic execution of algorithms it is often the case that there are introduced
the variables and corresponding constraints that are redundant. By calling them redundant
we mean that they do not provide any additional information and can be safely removed.
Transalg uses several techniques that often make it possible to significantly reduce the
redundancy of a resulting SAT encoding.

First technique exploits the fact that many algorithms can be represented in form of
sequences of procedures which are simple and very similar to each other. Therefore, during
the symbolic execution it is possible that the same Boolean formulas will be generated
multiple times. Taking this fact into account, for each new formula Transalg first checks
whether it is already present in the database. If the answer is “no” then the newly constructed
formula is added to the database and associated with a new encoding variable. Otherwise,
on the following steps the variable associated with the existing formula from the database is
used. The approach is close to that introduced in [ABE00].

Another technique is related to the in and out attributes. Upon the generation of
the resulting encoding, Transalg analyzes all functional dependencies of encoding variables
on one another in order to define the minimally required set of variables that influence the
construction of an output from an input. All the remaining variables and formulas defined
using them are safely removed from an encoding without influencing its correctness. After
this the variables are renumbered to exclude gaps.

The third technique aimed at reducing the number of auxiliary variables in a resulting
propositional encoding works as follows. Transalg can use Boolean functions with arity
k > 2 in the role of elementary operations over data in memory cells of its abstract machine.
Therefore, as a result of each elementary step, a new encoding variable v is introduced and
the following Boolean formula is constructed:

v ≡ φ(ṽ1, . . . , ṽk). (3.2)

Here, ṽ1, . . . , ṽk are some encoding variables introduced at the previous steps. In other
words, it is possible to represent fn over any complete basis with arbitrarily complex basis
functions. To transform (3.2) into CNF, Transalg uses the well known Espresso library
[BSVMH84]. The arity of a function, which is given as an input to Espresso, is often a very
serious limitation: for functions with more than 20 inputs the performance of Espresso
is beginning to have a significant impact on the time of SAT encoding construction. To
counter this issue, Transalg implements the ability to split formulas of this kind into
several disjoint parts. Each such part is associated with a separate encoding variable. In
the TA language these variables are declared using a special mem attribute. The described
technique gives the user more manual control: for example, using mem, one can change
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the ratio between the number of variables and the number of clauses in the resulting SAT
encoding.

3.3. Cryptographic-specific features of Transalg. Transalg also has several fea-
tures that are specific for cryptographic algorithms and the use cases typical for algebraic
cryptanalysis. In fact, one of the main features of Transalg that make it better for
cryptographic problems is the bit type. The availability of this type is particularly useful
when working with keystream generators that have shift registers of sizes which are not
multiple of 8 (e.g., 19, 22, 23 bits). Note that in the general purpose programming lan-
guages, such as C, the memory is allocated in blocks of bits of a fixed size that is dependent
both on the size of supported data types (8, 16, 32, 64 bits) and a particular compiler’s
implementation. Thus, the C program for a keystream generator with a register of size, say,
19 bits, inevitably processes excess data. For example, to represent such a shift register
(of size 19) it would use a 32-bit integer variable. Consequently, this problem remains
relevant for generic systems that employ the C language in that they require additional
procedures to remove redundant Boolean variables from an encoding. Another important
feature of Transalg is that it allows to work with bit arrays simultaneously as arrays
and as integer variables (represented in binary form). In particular, it can perform basic
arithmetic operations (addition, subtraction, multiplication) with bit arrays without any
additional data type transformations.

Cryptographic algorithms often use various bit shifting operators and also copy bits
from one cell to another without changing their value. During the symbolic execution of
such operators, there may appear elementary steps producing the formulas of the kind
v ≡ ṽ. However, we do not really need such formulas in a propositional encoding since it is
evident that without the loss of correctness we can replace an arbitrary formula of the kind
v′ ≡ φ(v, . . .) by a formula v′ ≡ φ(ṽ, . . .). In such cases Transalg does not introduce new
encoding variables.

When implementing cryptographic attacks in SAT form, it is sometimes desirable to
manually track (and manipulate) the values of Boolean variables corresponding to specific
program variables. The TA language allows to add a special directive that outputs the
numbers of encoding variables corresponding to specific program variables into the header
of a propositional encoding. For this purpose it uses the core vars(<program variable>)

instruction. Here program variable can be a bit variable or a bit array. During the
translation of a TA program, Transalg will put into the DIMACS file header the numbers
of encoding variables associated with specified program variable at the moment when the
core vars() instruction is executed. Usually, the obtained variable numbers are used either
to parameterize a SAT solver or in special heuristics, such as in [DKV07].

It is often demanded by attacks to impose specific constraints on the values of variables
at certain steps of an algorithm. Since Transalg monitors the values of program variables
inside TA program at any step of computing, it also allows to impose any constraints on such
variables. For this purpose the TA language uses the assert(<expression>) instruction.
This instruction assumes that expression takes the value of True. The Boolean formula
corresponding to expression is added to the resulting propositional encoding.

Note, that the functionality related to core vars and assert instructions can only be
used if Transalg outputs the propositional encoding in the DIMACS CNF format.
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3.4. Example of a TA-program and its translation. Let us consider the following
example. Its goal is to demonstrate how the new encoding variables and constraints
involving them are introduced in the course of interpretation of a simple TA-program.
Note that in this example we do note consider all technical nuances of the propositional
encoding procedures implemented in Transalg. In particular, here we completely omit the
post-processing stage, at which the tool removes all the variables and constraints that are
redundant (because they do not influence the output in any way). The variable reindexing
is also performed during the post-processing.

Example 3.1. Consider an encoding of a linear feedback shift register (LFSR) [MVO96]
with Transalg. In Figure 1, we show the TA program for the LFSR with feedback
polynomial P (z) = z19 + z18 + z17 + z14 + 1 over GF (2) (here z is a formal variable). Let

789 123456101112131415161718

define e 100;

__in bit reg[19];

__out bit output[e];

 

bit shift_reg(){

 bit u = reg[18];

 bit v = reg[18]^reg[17]

 ^reg[16]^reg[13];

 reg = reg >> 1;

 reg[0] = v;

 return u;

}

void main(){

 for(int i = 0; i < e; i = i+1)

 output[i] = shift_reg();

}

 

789 123456101112131415161718

0

0

Figure 1. TA program for LFSR

us view the process of executing this TA program as a sequence of data modifications in
a memory of an abstract computing machine at moments {1, . . . , e}. At every moment
t ∈ {0, 1, . . . , e}, Transalg links a set V t of encoding variables with program variables
of the bit type. Denote V =

⋃e
t=0 V

t. Let us separately denote by V in and V out the sets
formed by encoding variables that correspond to input and output data, respectively. Note
that during the translation of transition from moment t to moment t+1 it is not necessary to
create new encoding variables for every cell of the register. If we copy data from one register
cell to another, then we can use the same encoding variable to represent the corresponding
data value at moments t and t+ 1. Therefore, at each moment Transalg creates only one
new encoding variable and links it with program variable reg[0]. All the other program
variables get linked with encoding variables created at previous moments.

In accordance with the above, the set of encoding variables corresponding to the initial
values of the register is V in = V 0 = {v1, . . . , v19}. After each shift we encode values of
registers’ cells with sets

V 1 = {v2, v3, . . . , v20}, V 2 = {v3, v4, . . . , v21}, . . . , V e = {ve+1, ve+2, . . . , ve+19}.
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Note that V out = {v1, . . . , ve}. Thus the set of encoding variables for this program is
V = {v1, v2, . . . , ve+19}, and the corresponding variables are connected between each other
by the following Boolean formulas (here ⊕ stands for addition modulo 2):

v20 ≡ v1 ⊕ v2 ⊕ v3 ⊕ v6
. . .

ve+19 ≡ ve ⊕ ve+1 ⊕ ve+2 ⊕ ve+5.

Note that in the example the register’s size is not a multiple of 8. As it was noted
above, in the tools that employ general purpose programming languages, such as C, the
description of such an algorithm would require either using a 32-bit integer variable to store
register’s stage, or using nineteen 8-bit variables each representing a single bit. Either way
there would be quite a lot of unused bits in a constructed SAT encoding, which would need
to be taken care of.

4. Comparison of tools for constructing SAT encodings of cryptanalysis
problems

In the present section, we briefly describe major software tools that can translate crypto-
graphic algorithms to SAT, compare their functional capabilities with that of Transalg,
and study the performance of state-of-the-art SAT solvers on several classes of SAT encodings
obtained by all discussed tools.

4.1. Tools for translating cryptographic algorithms to SAT. We are aware of several
domain-specific software tools (besides Transalg) that can be used to encode cryptographic
algorithms to SAT. Below we provide their brief description.

The Grain-of-Salt tool [Soo10] is designed to produce SAT encodings only for
cryptographic keystream generators based on the shift registers. It uses a special declarative
language to describe each of keystream registers (by means of its feedback polynomials) and
the general configuration of a generator. Unfortunately, Grain-of-Salt does not support
many standard cryptographic operations and therefore can be applied only to a limited
spectrum of cryptographic functions.

URSA (a system for Uniform Reduction to SAT [Jan12]) is a propositional encoding tool
that is applicable to a wide class of combinatorial problems, varying from CSP (Constraint
Satisfaction Problem) to cryptography. To describe these problems, URSA employs a
declarative domain-specific language. The constructed SAT instances can be solved using
two embedded solvers: ARGOSAT [Mar09] and CLASP [GKNS07].

Cryptol is a domain-specific Haskell-like programming language for specifying crypto-
graphic algorithms [LM03, EM09, ECW09]. Software Analysis Workbench (SAW) [CFH+13]
allows to produce SAT and SMT encodings of cryptographic problems described in Cryp-
tol. Further we refer to SAW that takes as an input a program written in Cryptol as
SAW+Cryptol.

Another major class of tools that can translate cryptographic algorithms to SAT is
formed by the systems designed for software verification. Probably the most well known
and powerful representative of this class is the CBMC tool (Bounded Model Checking for
ANSI C [CKL04]). CBMC works with programs written in the C language. Note, that the
primary application domain of CBMC is software verification. Therefore, for each program
there should be a hypothesis that needs verifying or falsifying. Putting cryptanalysis attacks
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in this context requires some paradigm adjustment, but in the case of CBMC it can be
done quite easily.

4.2. Computational comparison of tools. To compare the effectiveness of propositional
encodings produced by the aforementioned tools, we chose several cryptographic keystream
generators. Here they are, ordered by the resistance to SAT-based cryptanalysis (from
the weakest to the strongest): Geffe [Gef73], Wolfram [Wol86], Bivium [Can06] and Grain
[HJM07]. The Geffe generator is a simple generator, which is not resistant to many
cryptographic attacks including the correlation attack proposed in [Sie84]. We considered
the strengthened Geffe generator (to which we further refer as S Geffe), which is a particular
case of the threshold generator [Bru84]. It turned out that S Geffe with a secret key length
up to 160 bits is not resistant to SAT-based cryptanalysis (when implementing the known
plaintext attack). We considered the variant of the S Geffe generator that uses three LFSRs
defined by the following primitive polynomials:

z52 + z49 + 1;
z53 + z52 + z38 + z37 + 1;
z55 + z31 + 1.

Thus, the considered generator has a secret key of 160 bits.
Unlike many other generators, the Wolfram generator does not use shift registers. It is

based on a one-dimensional cellular automaton [von51]. This generator is not resistant to
the attack proposed in [MS91] if its secret key length is less than 500 bits. Meanwhile, the
cryptanalysis of the Wolfram generator with the secret key length of more than 150 bits is
already a hard problem for state-of-the-art SAT solvers. Therefore, below we consider the
version of the generator with 128-bit secret key. The Bivium generator [Can06] is a popular
object for SAT-based and algebraic cryptanalysis. Nevertheless, SAT-based cryptanalysis
of Bivium is quite a hard problem that, as the estimations show [SZ16], can be solved in
reasonable time in a powerful distributed computing environment. Finally, we considered
the Grain generator [HJM07], in particular, its v1 version. There are no known attacks on
this version that are better than the brute force attack.

For each mentioned generator a SAT-based variant of the known plaintext attack was
studied. It means that the following problem was considered: to invert a function of the form
g : {0, 1}n → {0, 1}m, where n is the amount of bits of registers’ state that produces the
analyzed keystream, and m is the length of the analyzed keystream. Using SAW+Cryptol,
URSA, CBMC, and Transalg, we built propositional encodings of the following functions:

gS Geffe : {0, 1}160 → {0, 1}250,
gWolfram : {0, 1}128 → {0, 1}128,
gBivium : {0, 1}177 → {0, 1}200,
gGrain : {0, 1}160 → {0, 1}160.

It should be noted that because Grain-of-Salt operates only with shift registers, it was
not possible to construct SAT encodings of the Wolfram generator via this tool. In Table 1
the obtained encodings are compared by the amount of variables, clauses and literals.

At the second stage, we used the constructed encodings for implementing the known
plaintext attack on the described generators. As it was mentioned above, the inversion
problems for gS Geffe : {0, 1}160 → {0, 1}250 and gWolfram : {0, 1}128 → {0, 1}128 are quite
easy even for sequential SAT solvers. Meanwhile, the inversion problem for gBivium :
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Table 1. The characteristics of SAT encodings.

Grain-of-Salt URSA SAW+Cryptol Transalg CBMC
S Geffe

Vars 1 910 2 394 1 883 1 000 2 668
Clauses 8 224 8 436 6 891 6 474 9 514
Literals 28 976 23 308 19 793 25 226 26 536

Wolfram
Vars - 24 704 24 620 12 544 32 904
Clauses - 86 144 85 784 74 112 114 830
Literals - 233 600 232 811 246 400 311 460

Bivium
Vars 842 1 637 1 432 1 172 1 985
Clauses 6 635 5 975 5 308 7 405 7 044
Literals 29 455 16 995 15 060 29 745 19 866

Grain
Vars 4 546 9 279 4 246 1 945 10 088
Clauses 74 269 37 317 16 522 34 165 40 596
Literals 461 069 105 925 46 402 190 388 115 178

{0, 1}177 → {0, 1}200 is hard even for the best parallel SAT solvers. The inversion problem
for gGrain : {0, 1}160 → {0, 1}160 is extremely hard and cannot be solved in reasonable time
in any modern distributed computing system that we are aware of. That is why we studied
weakened variants of the last two problems. In particular, SAT solvers were given some
information about unknown registers’ state. In the case of Bivium, the last 30 bits of the
second register were assumed to be known. In the case of Grain, 102 (out of 160) bits were
known: the whole 80-bit linear register and the last 22 bits of the 80-bit nonlinear register.
The constructed SAT instances are denoted by Bivium30 and Grain102, respectively.

For each considered generator, a set of 100 SAT instances was constructed by generating
random values of corresponding registers states, which were used to produce keystreams.
It means that for each generator we randomly constructed 100 variants of registers’ initial
states, then used the implementation of the generator to produce the corresponding 100
fragments of keystream. After this, we constructed SAT instances (by each of the considered
tools) and SMT instances (by SAW+Cryptol and CBMC) for all generated pairs of initial
states and keystream fragments. The goal of using the pre-generated pairs of initial register’s
states and keystream fragments is to perform the testing in equal conditions: indeed, it is
often the case that for some keystream fragments the inversion problems are easier to tackle
due to specific features of a corresponding algorithm. Thus it makes sense to compare over
the exact same cryptanalysis problems encoded to SAT in different forms. All constructed
SAT and SMT instances are available online [OGZ+].

Let us give a few more comments on the matter. It turned out that the Grain-of-Salt
tool neither allows to construct a template CNF nor has any instructions to assign the
Boolean variables corresponding to keystream bits to some pre-specified values. It basically
generates and uses a random keystream fragment every time it is run. Thus, we had to
resort to extracting the randomly generated keystream fragment (and initial state) from
the Grain-of-Salt encoding and using it to assign the necessary bits in the encodings
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constructed by all the other tools. To construct such encodings via Transalg and CBMC
we used template CNFs. In SAW+Cryptol and URSA each encoding was constructed
using individual program in which pre-specified data was added with special instructions.

In the experiments we employed the SAT solvers that took prizes on the last SAT Com-
petitions and also several SAT solvers which have shown good results on SAT-based crypt-
analysis problems: MapleLcmDistChronoBt [NR18], Maple LCM Dist [XLL+17],
MapleCOMSPS LRB VSIDS 2 [LOG+17], MapleSAT [LGPC16], Glucose [AS17],
Maple LCM Scavel [XWCC18], COMiniSatPS Pulsar [Oh17], Cryptominisat5
[SNC09], Lingeling [Bie17], MiniSat [ES04], Rokk [YO14].

We also used the SMT solvers that took prizes on the last SMT Competitions: CVC4
[BCD+11], Z3 [dMB08] and Yices [Dut14]. In all experiments described below, we employed
the HPC-cluster “Academician V.M. Matrosov” [mat] as a computing platform. Each node
of this cluster is equipped with two 18-core Intel Xeon E5-2695 CPUs. Each solver was run
in the sequential mode (on 1 CPU core) with the time limit of 5000 seconds (following the
rules of SAT competitions).

Table 2. Solving cryptanalysis problems for S Geffe, Wolfram, Bivium, and
Grain. For each considered pair (keystream generator, tool) only results
obtained by the best solver are shown. Time is shown in seconds.

TrAlg GoS URSA Cr-SAT Cb-SAT Cr-SMT Cb-SMT

S Geffe
Solver MiniSat MiniSat MiniSat MiniSat MiniSat yices yices
Solved 100/100 100/100 100/100 100/100 100/100 100/100 100/100
Avg. time 4.05 4.61 4.64 3.98 3.26 11.17 13.61

Wolfram
Solver MaCom - MaCom rokk MaCom yices z3
Solved 100/100 - 100/100 100/100 100/100 76/100 78/100
Avg. time 442 - 931 614 536 1631 1844

Bivium30
Solver MaLcm MaLcm rokk MaChr MaChr yices -
Solved 100/100 100/100 100/100 100/100 100/100 13/100 0/100
Avg. time 725 781 788 695 995 1759 -

Grain102
Solver rokk rokk rokk rokk rokk yices -
Solved 97/100 83/100 85/100 85/100 95/100 3/100 0/100
Avg. time 1407 2290 2038 2364 1737 3090 -

In Table 2 for each considered pair (generator, tool) only the results obtained by the
best solver are shown. In this table we use the following abbreviations:

• MaChr for MapleLcmDistChronoBt;
• MaCom for MapleCOMSPS LRB VSIDS 2;
• MaLcm for Maple LCM Dist;
• Cr-SAT for SAW+Cryptol SAT;
• Cr-SMT for SAW+Cryptol SMT;
• Cb-SAT for CBMC SAT;
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• Cb-SMT for CBMC SMT;
• TrAlg for Transalg.

For each generator the best result is marked with bold. The corresponding cactus
plots are shown in Figure 2. The detailed data for all considered solvers can be found in
Appendix A. All cactus plots in the present paper were made by the mkplot script [Ign].
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Figure 2. Comparison of encodings on best solvers

Let us comment on the obtained results. On the considered problems SAT solvers
significantly outperform the SMT solvers. Among the latter, Yices showed the best results.
As for SAT, the Transalg encodings showed the best results on Wolfram and the weakened
Grain, SAW+Cryptol outperformed the competitors on the weakened Bivium, while
CBMC showed the best results on S Geffe.

4.3. Discussion. The tests we considered above to compare different tools for constructing
SAT encodings in fact represent one of the most simple cryptographic attacks in SAT
form: each a single instance with values of variables (which weaken an instance) fixed in a
straightforward manner by assigning values to variables directly. In practical cryptographic
attacks it is often necessary to introduce more complex constraints. They may link together
several Boolean variables, or require to solve sequences of instances, where the next instance
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is constructed using the information obtained once the previous is solved, etc. Thus, in
practice the specific abilities of the propositional encoding systems that make it possible to
impose additional constraints and tune a SAT encoding become exceptionally important.

In this context, we would like to specifically remind the reader about several Transalg
features described in Section 3 that prove to be quite useful when implementing various
SAT-based cryptographic attacks. The distinctive feature is that Transalg can construct
and explicitly output a template CNF C(fn) (see Definition 2.2) with a number of specific
characteristics. A template CNF essentially encodes the algorithm in a pure symbolic
execution sense. It has the clearly outlined input and output variables, and all the auxiliary
and output variables depend on the input variables. As a result, in template CNFs constructed
by Transalg, the variables are represented and numbered in the order in which they are
introduced during the translation process. It means that the first variables correspond to a
function’s input and the last variables to its output. The Boolean variables not relevant
to constructing the output are pruned out during the propositional encoding process. If
necessary, Transalg performs re-numbering of variables to avoid gaps.

Thanks to the outlined sets of input and output variables, it is easy to use template
CNFs to test the correctness of constructed SAT encodings, as well as to directly interpret
satisfying assignments found by a SAT solver. The fact that in template CNFs the variables
corresponding to the function input are outlined, makes it possible to use them for imple-
menting the partitioning strategy [Hyv11] in a distributed computing environment (see for
example [SZ15, SZ16]) without specific preparation. Another important feature of input
variables is that they form a Strong Unit Propagation Backdoor Set (SUPBS) [WGS03] in
this template CNF. We will touch these questions in more detail in Section 5. Also, using
template CNFs we can quickly generate families of instances that encode a cryptanalysis
problem: to make certain SAT instance for function inversion it is sufficient to add to a
template CNF the unit clauses encoding the corresponding output.

When translating an algorithm to SAT, the data structures employed by Transalg
preserve all the connections between the introduced Boolean variables and the corresponding
cells of the abstract machine’s memory. This fact allows one to effectively write auxiliary
constraints on arbitrary subsets of program variables. For this purpose the corresponding
constraints are introduced in the TA program using the assert instruction: they will then
be correctly transferred to the resulting SAT encoding. This feature is very important
when implementing the SAT variants of the so-called differential attacks on cryptographic
hash functions [WLF+05, WY05]. In CBMC such constraints can be imposed by using the
assume instruction.

In Table 3 we compare all considered systems with respect to several criteria. Let us
give additional comments to it. Technically, CBMC and URSA can construct template
CNFs. The CBMC system constructs template CNFs directly, but in order to do so one has
to add to the corresponding program an empty hypothesis. For all practical purposes the
obtained SAT encoding is a template CNF (despite having unit clauses induced by empty
hypothesis), but this step does not look entirely natural. URSA adds the values of variables
to a constructed SAT encoding by means of unit clauses. It also has an option of outputting
the mapping between the variables from a program in its domain-specific language and the
Boolean variables in a constructed SAT encoding. However, to make a template CNF one
has to parse the URSA output and remove the unit clauses corresponding to function’s
outputs. To the best of our knowledge, both SAW+Cryptol and Grain-of-Salt have no
option to output a template CNF with or without additional steps.
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Table 3. Main functional abilities of Grain-of-Salt, URSA,
SAW+Cryptol, CBMC and Transalg.

System GoS URSA SAW+Cryptol CBMC Transalg

Encodes conditional operators - + + + +
Supports procedures and
functions - - + + +
Has embedded solvers - + + + -
Constructs SMT encodings - - + + -
Outlines sets of input
and output variables + + - + +
Constructs template CNFs - - - +/- +
Adds auxiliary constraints
on variables inside a program - - - + +

Regarding the sets of input and output variables – almost all tools can output the
corresponding information. However, in Transalg the input variables are always the first
and the output variables are always the last, and always in the order specified in a TA
program. The other tools usually provide the mapping of program variables to Boolean
variables, but the ones corresponding to inputs and outputs are usually spread in the set of
variables and rarely follow any specific order.

As for writing auxiliary constraints on arbitrary subsets of program variables, it appears
that only Transalg and CBMC provide this functionality directly. The mapping of
program variables to encoding ones (provided by URSA, for example) theoretically enables
one to add them manually, but this is a very arduous process.

The remaining points in Table 3 reflect the richness of a language employed by a
propositional encoding tool and its system capabilities such as whether it has embedded
solvers and the ability to work with SMT encodings.

We believe that the lack of embedded solvers in Transalg and other tools should not
be viewed as a drawback, at least in the cryptographic context. Indeed, the cryptanalysis
instances are typically very hard, and to solve them one usually has to use the best available
tools, such as cutting edge SAT solvers, including the parallel ones. Taking into account the
fact that almost every year the SAT solvers become better and better (which can be tracked
in annual SAT competitions), it is actually quite hard to maintain the list of embedded
solvers up to date at all times. The existence of various API and Python interfaces for SAT
solvers, e.g., [IMMS18] allows to use external libraries for fast prototyping and testing.

As for the ability to output SMT encodings, our empirical evaluation to date shows
that SMT solvers typically work worse on cryptanalysis instances compared to cutting edge
SAT solvers. We believe that adding this functionality to Transalg and investigating why
SMT solvers often lose in comparisons similar to that summarized in, e.g., Table 2 is an
interesting direction for future development and research.

5. Inversion of real world cryptographic functions
using their translation to SAT

In this section, we present our results on SAT-based cryptanalysis of several ciphering
systems. Some of these systems were used in practice in recent past, and some of them are
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still employed at the present moment. In all cases considered below we used the encodings
produced by the Transalg system.

5.1. Using Transalg to construct SAT-based guess-and-determine attacks on
several ciphers. Guess-and-determine is a general cryptanalysis strategy that can be used
to evaluate the cryptographic weakness of various ciphers. The number of such attacks
proposed in the recent two decades is very large. Here we would like to cite the book [Bar09],
the major part of which studies guess-and-determine approach in the context of algebraic
cryptanalysis.

The basic idea of the guess-and-determine strategy can be described as follows. Let F
be an arbitrary cipher that works with binary data, and let E(F ) be a system of Boolean or
algebraic equations that corresponds to some cryptanalysis problem for F . For example, for
a given known pair (x, y), where x is a plaintext and y is a ciphertext, E(F ) can be a system
from the solution of which one can extract the key z such that F (x, z) = y. Let us denote

by X the set of all variables from E(F ). Let X̃, X̃ ⊆ X be such a set of l Boolean variables,

that by assigning values to all variables from X̃ the problem of solving E(F ) becomes trivial.

The simplest example in this context is when X̃ consists of variables corresponding to a secret
key of a cipher F . Also X̃ can be formed by variables corresponding to the internal state
of a cipher at some time moment, for example, to an internal state of keystream generator
registers at some fixed step. In these cases by checking all possible assignments for variables
from X̃, i.e. by performing exhaustive search over the set {0, 1}l, we perform a brute force
attack on a cipher F . For some ciphers it is possible to find a set B, B ⊆ X, |B| = s, which
has the following property. Let us consider all possible assignments of variables from B. For
each assignment we set the corresponding values to variables from B into a system E(F )
and spend on solving each constructed weakened system by some fixed algorithm at most t
seconds (or any other fitting complexity measure). Assume that if we search over the whole
{0, 1}s in such a way, we find the solution for a considered cryptanalysis problem, and spend
on this process at most T = 2s · t. In this case we can say that there is a guess-and-determine
attack with complexity T . The set B is called a set of guessed bits. Guess-and-determine
attacks with a complexity significantly less than that of brute force attack are of particular
interest. Usually, for such attacks s� l.

In SAT-based cryptanalysis the problems of finding solutions for systems of equations of
the type E(F ) are reduced to SAT. To construct a guess-and-determine attack in this case,
one needs to know additional information about variables contained in the corresponding
CNF. In particular, it is very useful to know which CNF variables correspond to secret key
bits. The methodology of constructing template CNFs employed in Transalg allows one to
naturally outline sets of guessed bits, and traverse the search space of such sets to construct
guess-and-determine attacks with good runtime estimations (see e.g. [SZ16, ZK17]). Below
we will briefly describe guess-and-determine attacks on several ciphers, for which SAT
encodings were produced by Transalg.

In [SZBP11], a SAT-based guess-and-determine attack on the A5/1 keystream generator
was constructed. In that attack the set of guessed bits of size 31 was used. The attack
from [SZBP11] was later verified in the volunteer computing project SAT@home [PSZ12]
by solving several dozens of the corresponding SAT instances using the technique from
[SZBP11]. Later in [SZ15, SZ16] an automatic method for finding sets of guessed bits via
optimization of a special function was proposed. A value of the function for a particular
set of guessed bits is the runtime estimation of a corresponding guess-and-determine attack.
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Using this method, in [SZ16] a guess-and-determine attack on the Bivium cipher [Can06]
was constructed. The corresponding runtime estimation makes this attack realistic for
state-of-the-art distributed computing systems. Using the algorithms from [SZ16], in [ZK17]
guess-and-determine attacks on several variants of the alternating step generator were
constructed and implemented on a computing cluster.

In [SZO+18], a new class of SAT-based guess-and-determine cryptographic attacks was
proposed. It is based on the so-called Inverse Backdoor Sets (IBS). IBS is the modification
of the notion of Strong Backdoor Set for Constraint Satisfaction Problems (including SAT),
introduced in [WGS03]. IBS is oriented specifically on problems of SAT-based cryptanalysis.
In more detail, a Strong Backdoor Set for a CNF C with respect to a polynomial algorithm
A is such a subset B of a set of variables X of this CNF that setting values to variables from
B in C in any possible way results in a CNF for which SAT is solved by A. This definition
in its original form does not suit well to cryptanalysis problems. However, in [SZO+18]
we modified it in the context of discrete functions inversion problems. Conceptually, the
modification consists in the following. Instead of demanding that A is polynomial, we limit
its runtime by some value t. In the role of the set of guessed bits we use an arbitrary B ⊆ X
and demand that algorithm A can invert some portion of outputs of function fn constructed
for random inputs from {0, 1}n in time ≤ t using the assignments of variables from B as
hints. The portion of inverted outputs is the probability of a particular random event. If it
is relatively large and the power of B is relatively small, then, as it was shown in [SZO+18],
B can be used to construct on its basis a nontrivial guess-and-determine attack on fn.
The set B defined in such a way is called Inverse Backdoor Set (IBS). The effectiveness of
guess-and-determine attacks based on IBS can be evaluated using the Monte Carlo method
[MU49]. The problem of finding IBS with good runtime estimation of a corresponding
guess-and-determine attack in [SZO+18] was reduced to a problem of optimization of a black
box function over the Boolean hypercube. Using IBSs, in [SZO+18] the best or close to the
best guess-and-determine attacks on several ciphers were constructed. In particular, the
runtime estimation of the constructed attack using 2 known plaintext (2KP) on the block
cipher AES-128 with 2.5 rounds is several dozen times better than that of the attack from
[BDF11] and requires little to no memory, while the attack from [BDF11] needs colossal
amounts of it. In [PSU19, PBU19] several evolutionary algorithms were used to minimize
black box functions introduced in [SZO+18] resulting in new guess-and-determine attacks
on several keystream generators.

Let us once again emphasize the important features of translating algorithms to SAT,
which are advantageous in the context of construction of guess-and-determine attacks. Here
we first and foremost mean an ability to provide information about the interconnection
between the variables in propositional encodings with corresponding elementary operations
performed in an original cryptographic algorithm. For example, the ability to outline the
variables that encode an input of a considered function for attacks described in [SZO+18]
allows us to use template CNFs for effective generation of large random samples containing
simplified CNFs. Each of them is formed by applying Unit Propagation to template CNF
augmented by the values corresponding to the known function input. When implementing a
guess-and-determine attack with realistic runtime estimation, Transalg’s features make
it possible to naturally mount the attack using the incremental SAT technique [ES03]. In
some cases it can lead to significant performance gains (see, e.g., [ZK17]).
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5.2. SAT-based cryptanalysis of hash functions from MD family. In this section,
we present examples of application of the Transalg system to cryptanalysis of cryptographic
hash functions from the MD family. It should be noted that these functions are still considered
to be interesting among cryptanalysts, and the first successful examples of application of
SAT-based cryptanalysis to real world cryptosystems are related specifically to hash functions
from the MD family [MZ06]. The present section is split into several subsections: first we
consider the problems of finding collisions for MD4 and MD5 functions. Then we construct
preimage attacks on truncated variants of the MD4 function.

5.2.1. Finding Collisions for MD4 and MD5. Let f : {0, 1}+ → {0, 1}c be some crypto-
graphic hash function that works with messages split into blocks of length n, n > c. It defines
a function of the kind fn : {0, 1}n → {0, 1}c. To produce the SAT encoding for the problem
of finding collisions of this function, we essentially translate the program describing fn twice
using disjoint sets of Boolean variables. Let C1 and C2 be the corresponding CNFs in which
the sets of input and output variables are denoted by X1 = {x11, . . . , x1n}, X2 = {x21, . . . , x2n}
and Y 1 = {y11, . . . , y1c}, Y 2 = {y21, . . . , y2c} respectively. Then finding collisions of fn is
reduced to finding an assignment that satisfies the following Boolean formula:

C1 ∧ C2 ∧ (y11 ≡ y21) ∧ . . . ∧ (y1c ≡ y2c ) ∧
(
(x11 ⊕ x21) ∨ . . . ∨ (x1n ⊕ x2n)

)
. (5.1)

Below we consider the problems of constructing collisions for the MD4 and MD5 hash
functions, which were actively used up until 2005. Let us first briefly remind the reader
about features of the Merkle-Damgard construction [Mer89, Dam89], which serves as a basis
of many cryptographic hash functions. In accordance with this construction, in MD4 and
MD5 the process of computing a hash value is considered as a sequence of transformations
of data stored in a special 128-bit register, to which we will refer as a hash register. The
hash register is split into four 32-bit cells. At the initial stage a message called Initial
Value (IV), which is specified in the algorithm’s standard, is put into a hash register. Then
the contents of the hash register are mixed with a 512-bit block of a hashed message by
means of iterative transformations called steps. There are 48 and 64 steps in MD4 and
MD5 respectively. At each step a 32-bit variable is associated with an arbitrary cell of a
hash register. Such variables are called chaining variables. The transformations of data in
a hash register which were defined above specify the so-called compression function that
transforms a 512-bit message (block) into a 128-bit hash. We will denote the compression
functions used in MD4 and MD5 as fMD4 and fMD5, respectively. The MD4 and MD5
algorithms can be used to construct hash values for messages of an arbitrary length. For
this purpose an original message is first padded so that its length becomes a multiple of
512, and then is split into 512-bit blocks. Let M = M1, . . . ,Mk be a k-block message, where
Mi, i ∈ {1, . . . , k} are 512-bit blocks. A hash value for message M is constructed iteratively
according to the following recurrence relations: χ0 = IV , χi = fMD(χi−1,Mi), i = 1, . . . , k
(here MD is either MD4 or MD5). A word χk is the resulting hash value of a message M .
If hash values of two different k-block messages coincide, then the corresponding messages
form a k-block collision of the considered hash function.

The MD4 and MD5 algorithms were completely compromised with respect to finding
collisions in [WLF+05, WY05]. The cryptanalysis methods used in the mentioned papers
belong to a class of the so-called differential attacks. In the attacks from [WLF+05, WY05],
the MD4 and MD5 hash functions were applied to two different messages. The processes of
constructing hash values for these messages correspond to transformations of the contents of
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two hash registers. The main feature of differential attacks is that additional constraints
are imposed on chaining variables associated with the corresponding cells of hash registers
in the form of integer differences modulo 232. Also, special constraints on individual bits
of these chaining variables can be used. These two types of constraints form the so-called
differential path. In [WLF+05, WY05], differential paths were proposed that make it possible
to effectively construct single-block collisions for MD4 and two-block collisions for MD5.

As we already mentioned, the first SAT variants of attacks from [WLF+05, WY05]
were constructed in [MZ06]. To obtain a corresponding propositional encoding, it is first
necessary to construct a formula of the kind (5.1) and then transform it to CNF using the
Tseitin transformations. However, the resulting CNF turns out to be extremely hard even
for state-of-the-art SAT solvers. A realistically feasible runtime of cryptanalysis is achievable
only by adding to a constructed CNF the clauses which encode a differential path. Special
instruction of the TA language (the assert instruction) makes it possible to implement this
step quite easily. We would like to additionally note that the constraints defining a non-zero
differential path eliminate the need for constraints of the kind

(
(x11 ⊕ x21) ∨ . . . ∨ (x1n ⊕ x2n)

)
in (5.1), which indicate the difference between sets of values of the input variables (since
only different inputs of a hash function can lead to a non-zero differential path).

In Table 4, we compare the SAT encodings of differential attacks for finding collisions
for MD4 and MD5 used in [MZ06] with those constructed by Transalg.

Table 4. The parameters of SAT encodings for finding collisions of the MD4
and MD5 hash functions with differential paths from [WLF+05, WY05].

SAT encodings from [MZ06] Transalg encodings
MD4 variables 53228 18095

clauses 221440 187033
MD5 variables 89748 34181

clauses 375176 295773

For the problem of finding single block collisions of the MD4 hash function, we managed
to find about 1000 MD4 collisions within 200 seconds on one core of Intel i7-3770K (16 Gb
RAM) using the SAT encodings produced by Transalg and the Cryptominisat solver
[SNC09]. Note that in [MZ06] it took about 500 seconds to construct one single block
collision for MD4.

After this we studied the problem of finding two-block collisions of MD5. This process
consists of two stages. At the first stage, we search for two 512-bit blocks M1 and M ′1
that satisfy the differential path from [WY05]. We denote χ1 = fMD5(IV,M1), χ

′
1 =

fMD5(IV,M ′1). At the second stage, we look for second 512-bit blocks M2 and M ′2 such that
fMD5(χ1,M2) = fMD5(χ′1,M

′
2).

For the problem of finding a first message blocks pair (M1,M
′
1), which turned out

to be quite hard, we used the HPC-cluster “Academician V.M. Matrosov” [mat]. Each
computing node of this cluster is equipped with two 18-core Intel Xeon E5-2695 CPUs.
We ran state-of-the-art SAT solvers working in the multi-threaded mode (36 threads) on
the cluster. In particular, we used plingeling, treengeling (versions from the SAT
competition 2014 [Bie14]) and plingeling, treengeling [Bie17], painless [FBSK17],
glucose-syrup [AS17] from the SAT competition 2017. Surprisingly, only treengeling
2014 managed to solve the corresponding SAT instances within a time limit (30 hours).
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During these experiments, several message blocks with a lot of zeros in the beginning
were found. A more detailed analysis showed that the maximum number of first message
bytes that can be set to 0 simultaneously in M1 and M ′1 is 10 bytes. Assignment of the
11th byte to 0 in M1 and M ′1 makes the corresponding SAT instance unsatisfiable (which
can be proven quickly). Thus we outlined the class of message blocks pairs that satisfy
the differential path from [WY05] and both blocks have first 10 zero bytes. The problem
of finding a pair of such blocks is relatively simple and can be solved using a number of
SAT solvers (compared to the situation when the first 10 bytes are not set to zero). On the
corresponding SAT instance we ran four different SAT solvers (painless, glucose-syrup,
treengeling 2014, treengeling 2017) each working in multi-threaded mode on one
cluster node. In 24 hours each solver managed to find several message blocks pairs, except
for treengeling 2014 SAT solver, which found only one. The corresponding results are
given in Table 5.

Table 5. Finding a pair M1, M
′
1 that satisfies the differential path from

[WY05], and both M1 and M ′1 have first 10 zero bytes.

SAT solver Solved instances Avg. time (s)
painless 3 32327
glucose-syrup 3 38302
treengeling 2014 1 54335
treengeling 2017 3 33357

For the obtained pairs of first blocks, the problem of constructing such pairs (M2,M
′
2)

that the messages M1|M2 (the concatenation of two 512-bit blocks M1 and M2) and M ′1|M ′2
form a two-block collision for MD5 turned out to be much simpler: on average one such pair
(M2,M

′
2) was found by treengeling 2014 solver in 500 seconds on one cluster node. An

example of the two-block collision of the described kind is shown in Table 6.
In conclusion we would like to once more point out features of the Transalg system that

made it possible to obtain the presented results. It is mainly thanks to the translation concept
of Transalg that allows one to directly work with variables encoding each elementary
step of a considered algorithm. That is why we can effectively reflect in SAT encoding
any additional constraints, such as, for example, the ones that specify a differential path.
As far as we known only Transalg and CBMC allow to add such constraints, whereas
SAW+Cryptol, URSA and Grain-of-Salt do not have this capability.

It should be noted that at the current stage SAT-based cryptanalysis is less effective in
application to the collision search problems for cryptographic hash functions in comparison
with specialized methods [SSA+09, SWOK07]. On the other hand, the use of new SAT
encodings and state-of-the-art SAT solvers makes it possible to find collisions for MD4 hash
function about 1000 times faster than it was done in [MZ06]. From our perspective, the
potential for further improvements in this direction is far from being exhausted. It should be
also mentioned that SAT-based cryptanalysis is, apparently, the most effective for preimage
attacks on cryptographic hash functions. Below we build a new preimage attack on the
39-step version of the MD4 hash function using Transalg.

5.2.2. Preimage attacks on truncated variants of MD4. Despite the fact that MD4 is com-
promised with respect to collision finding, the problem of finding preimages for this function



25

Table 6. An example of two-block MD5 collision with first 10 zero bytes.

00 00 00 00 00 00 00 00 00 00 20 74 67 a6 f5 48

cb c1 6d a5 3e f7 b8 bc 67 a3 8d d9 3c 9b f5 b8

55 ed 32 06 06 0a 74 a3 0f b6 84 87 47 cf 91 d0

db 4c 6f 43 ef 64 f0 8d a4 1d 50 c6 26 df 95 fe

M1|M2 ff d1 2e c9 a0 90 aa b3 7d e7 e5 bc f2 3a 4e ab

24 b8 d4 13 4c cc 7b 1b 00 29 eb f5 53 7a 0d d1

5d 1f b7 79 af 36 ce 08 1e 44 a2 d0 51 ec 91 fb

c5 4c a2 89 75 b3 a3 84 ac 97 7f f2 7e 50 d4 56

00 00 00 00 00 00 00 00 00 00 20 74 67 a6 f5 48

cb c1 6d 25 3e f7 b8 bc 67 a3 8d d9 3c 9b f5 b8

55 ed 32 06 06 0a 74 a3 0f b6 84 87 47 4f 92 d0

db 4c 6f 43 ef 64 f0 8d a4 1d 50 46 26 df 95 fe

M ′1|M ′2 ff d1 2e c9 a0 90 aa b3 7d e7 e5 bc f2 3a 4e ab

24 b8 d4 93 4c cc 7b 1b 00 29 eb f5 53 7a 0d d1

5d 1f b7 79 af 36 ce 08 1e 44 a2 d0 51 6c 91 fb

c5 4c a2 89 75 b3 a3 84 ac 97 7f 72 7e 50 d4 56

Hash c22664780a9766ceb57065eba36af06b

is still considered to be extremely hard. While it is believed that MD4 is not highly resistant
to preimage attacks, all the arguments of this kind are mostly theoretical [Leu08]. Currently
there are no papers in which there would be solved the inversion problem of full-round MD4
in reasonable time. As far as we are aware, until recently, the paper [DKV07] was considered
to be the best practical attack on MD4 since it made it possible to invert a truncated variant
of MD4 with 39 (out of 48) steps. The attack from [DKV07] is a SAT-based variant of the
attack proposed by H. Dobbertin in [Dob98]. Let us briefly review the results from these
papers.

In fact in [Dob98] it was shown that the problem of inverting the first two rounds of
MD4 (i.e. 32 steps) is not computationally hard. The main idea of that paper was to add
some additional constraints on several chaining variables. These constraints significantly
weaken the system of equations corresponding to the process of filling the hash register of
MD4 during the first two rounds. In more detail, H. Dobbertin proposed to fix with constant
K the values of 12 chaining variables and showed that choosing the value of K at random
with high probability leads to a consistent system which can be easily solved.

In [DKV07] a SAT-based attack on MD4 was proposed that used ideas from [Dob98].
More precisely, in [DKV07] the constant K was fixed to 0. Also, the authors of [DKV07]
rejected one of the constraints from [Dob98]. Thus, in [DKV07] 11 constraints were used
instead of 12. The constraints of “Dobbertin” type were added to the propositional encoding
of the MD4 algorithm in the form of unit clauses. Hereinafter we refer to additional
constraints of the “Dobbertin” type on chaining variables as relaxation constraints. In some
cases the application of such constraints lead to propagation of the values of a large number
of other variables. The variables that represent the unknown preimage of a known hash pose
the main interest in this context.

In [DKV07], apart from the two-round variant of MD4, there were considered preimage
attacks on truncated MD4 variants with k steps, up to and including k = 39. For an arbitrary
k < 48 we will refer to a corresponding truncated variant of MD4 as to MD4-k. The best
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result presented in [DKV07] was a successful inversion of MD4-39 for several hash values of a
special kind. To solve each of such problems it took about 8 hours of the MiniSat SAT solver.
It is surprising that the computational results achieved in [DKV07] remained state-of-the
art for 10 years. In [GS18] we significantly improved them. It was the result of using a
special technique which reduced the problem of finding promising relaxation constraints
to the problem of optimization of a black box function over the Boolean hypercube. In all
experiments in [GS18] we used the SAT encodings constructed by the Transalg system.
Below let us briefly review results obtained in [GS18].

To automatically take into account information about relaxation constraints, special
variables called switching variables [GZK+17] were added to the corresponding TA programs.
The main idea of this approach consists in the following. Let C be a CNF that encodes
the inversion of some function and X be a set of Boolean variables from C. Assume that
we need to add to C new constraints that specify some predicate over variables from a set
X̃, X̃ ⊆ X. Let R(X̃) be a formula specifying this predicate. Now let us introduce new

Boolean variable u, u /∈ X. Consider the formula C ′ = C ∧ (¬u ∨ R(X̃)). It is clear that

the constraint R(X̃) will be inactive when u = 0 and active when u = 1. Let us refer to
variables similar to u as switching variables.

In application to preimage attacks on MD4-k, the switching variables make it possible
to reduce the problem of finding effective relaxation constraints (of the “Dobbertin” type)
to the optimization problem over the Boolean hypercube. With that purpose in [GS18] we
introduce a special measure µ that heuristically evaluates the effectiveness of a considered
set of relaxation constraints. Each particular set of relaxation constraints is defined by an
assignment of switching variables. The measure µ is a black box function. The relaxation
constraints for which the value of µ lies in a particular range are considered to be promising.
Thus, the arguments of the considered function are the switching variables and its values
are the values of µ on the corresponding sets of relaxation constraints. The function defined
that way is maximized over the Boolean hypercube, each point of which represents an
assignment of switching variables. Since the constructed function does not have an analytical
representation, it is sensible to use metaheuristic methods for its maximization. In particular
in [GS18] we used an algorithm from the tabu search [GL97] class. We view as promising such
sets of relaxation constraints whose activation results in derivation by the Unit Propagation
rule of a relatively large number of variables corresponding to the hashed message in a SAT
encoding (the number of such variables gives the value of function µ). Similar to [DKV07]
in the role of relaxation constraints we used the constraints meaning that the corresponding
chaining variables should take the value K = 0. As a result, we managed to find new
relaxation constraints that make it possible to invert the MD4-39 hash function much faster
than in [DKV07]. Let us briefly mention the results of computational experiments from
[GS18].

Let us note here that based on the features of the MD4 algorithm [Dob98] it is impossible
to impose constraints on the first four and the last (preceding the calculation of the final
hash value) four steps of the MD4-39 algorithm. According to this, the sets of new relaxation
constraints were selected (using the values of the corresponding switching variables) from
the set of power 31. Thus, the problem of maximization of a function described above over
the Boolean hypercube {0, 1}31 was considered. The details of experiments can be found in
[GS18]. As a result we found two new sets of relaxation constraints. We denote them as ρ1
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and ρ2 and they represent the following assignments of corresponding switching variables:

ρ1 : 0000000001101110111011101000000
ρ2 : 0000000000101110111011101100000

For example, vector ρ1 specifies the set of 12 relaxation constraints: chaining variables on
steps numbers: 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29 are assigned the value K = 0. The
application of the relaxation constraints specified by ρ1 and ρ2 allows one to find preimages of
the MD4-39 hash function for known hash values 0128 and 1128 within one minute of MiniSat
2.2 runtime. Note, that using constraints from [DKV07] the solution of the preimage finding
problem for 1128 requires about 2 hours, and the preimage finding problem for 0128 cannot
be solved in 8 hours. The corresponding results are presented in Table 7, where ρDe denotes
the set of relaxation constraints described in [DKV07] and ρDobbertin denotes the variant
of Dobbertins constraints from [Dob98] with constant K = 0. Below, these relaxation

Table 7. Finding the MD4-39 preimages for hash values 0128 and 1128.

Relaxation Result / Solving time (s)
constraints

χ = 0128 χ = 1128

ρ1 SAT / 20 SAT / 10
ρ2 SAT / 60 UNSAT / < 1
ρDobbertin SAT / 20 Unknown / > 30000
ρDe Unknown / > 30000 SAT / 7000

constraints are specified by the vectors of values of switching variables from {0, 1}31 (in the
notation similar to that of ρ1 and ρ2):

ρDobbertin : 0000000011101110111011100000000
ρDe : 0000000001101110111011100000000

What is particularly interesting is that the application of new sets of relaxation constraints ρ1
and ρ2 also allows one to find preimages of MD4-39 for randomly generated 128-bit Boolean
vectors persistently. To obtain this result, we considered a test set of 500 randomly generated
vectors from {0, 1}128. Regarding each of these vectors we assumed that it is a hash value of
MD4-39. After that the preimage finding problem for this value was solved using constraints
specified by vectors ρ1 and ρ2. For the prevailing part of the tasks (65–75%) the solutions
were successfully found using MiniSat 2.2. The average time of finding one preimage was
less than 1 minute. The rest (25–35% of the tasks) corresponded to 128-bit vectors for which
there were no MD4-39 preimages under constraints specified by ρ1 and ρ2 (this fact was
proven by the SAT solver in under 1 minute on average). These results are presented in
Table 8. Note that even in a few hours we did not manage to solve the preimage finding
problem for any vector from the test set using constraints from [DKV07] or [Dob98].

Let us summarize the results of the present section. From our point of view in this section
we convincingly demonstrated the power of SAT-based cryptanalysis methods. We believe
that future ideas both in the area of reduction to SAT and in algorithms of state-of-the-art
SAT solvers will make it possible to increase the effectiveness of SAT-based cryptanalysis
and extend the spectrum of its applications.
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Table 8. Finding the MD4-39 preimages for 500 randomly generated 128-bit
Boolean vectors.

Relaxation Avg. Max. Solved instances (in % of total
constraints solving solving number of instances)

time (s) time (s) with preimages with no preimages
(SAT) (UNSAT)

ρ1 12 80 65 35
ρ2 46 250 75 25

6. Related works

The ideas of using general purpose combinatorial algorithms to solve cryptanalysis problems
can be found in many papers starting from 90-th years of XX-th century. Apparently,
S.A. Cook and D.G. Mitchell were the first to propose using SAT solving algorithms in
cryptanalysis in [CM97]. The first example of propositional encoding of a cryptographic
problem (in particular of DES cryptanalysis) was given in [Mas99, MM00]. In [JJ05] the
problems of finding collisions of a number of cryptographic hash functions were reduced to
SAT. In [MZ06] propositional encodings of hash functions from the MD family were also
constructed. The authors of [MZ06] added to these encodings the constraints that encode
the differential paths introduced in [WLF+05, WY05]. This addition made it possible to
persistently construct single-block collisions for MD4 (it took about 10 minutes per collision).
Thus, [MZ06] can be considered to be the first paper in which SAT-based cryptanalysis was
successfully applied to relevant cryptographic algorithms. In the book [Bar09] SAT solvers
are considered to be the primary tool for solving problems of algebraic cryptanalysis. It
should be noted that in all the mentioned papers no automated system was used to construct
propositional encodings of the considered functions.

In the present paper we described in detail the principles of constructing propositional
encodings of discrete functions with the focus on functions employed in cryptography. We
also compared several different systems that can produce such SAT encodings in an automatic
mode. First it is the well known CBMC system for symbolic verification [CKL04, Kro09],
which have been developed for more than 15 years. CBMC is a generic system and it is
not designed with cryptanalysis problems in mind. However, as we show in Section 4, it
allows one to perform the majority of actions available to a limited number of considered
domain-specific systems. Here we mean SAW+Cryptol, Grain-of-Salt, URSA and
Transalg.

The first version of Cryptol was published in 2003 [LM03]. Its second version [EM09,
ECW09] was later augmented by SAW [CFH+13] that allowed to produce SAT encodings.
In 2010, the Grain-of-Salt system was proposed [Soo10]. Approximately at this time we
started the development of the Transalg software tool, which we describe in the present
paper (Transalg was first mentioned in papers in Russian in 2011 [OS11]). In 2012, the
URSA system, aimed at reducing to SAT various constraint programming problems, was
published [Jan12]. It can be applied to construct encodings of cryptographic functions as
well. Note that SAW+Cryptol, URSA and Transalg can encode to SAT algorithmic
descriptions of a very wide class of functions working with binary data. Meanwhile, Grain-
of-Salt is designed to work only with keystream generators based on shift registers. We
considered the pros and cons of all mentioned systems in detail in Section 4.
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CBMC, Transalg and other similar systems are based on symbolic execution of a
program specifying a considered function. The idea to transform programs to Boolean
formulas was first proposed by S.A. Cook in his paper [Coo71] which led to the creation
and development of the theory of NP-completeness. The notion “Symbolic Execution” first
appeared in the paper [Kin76] by J.C. King, where it is defined as a process of interpretation
of a program in a special extended semantics, within the context of which it is allowed to
take symbols as input and put formulas as output. Currently, symbolic execution combined
with Bounded Model Checking is actively used in software verification (see for example
[Kro09]).

As we mentioned above, SAT-based cryptanalysis is still actively developing. The
cryptographic attacks that employ SAT solvers show very good results for a number of
keystream generators: Geffe, Wolfram (present paper), Crypto-1, Hitag2 (see [SNC09]). In
[SZBP11], a successful SAT-based attack on the widely known A5/1 cryptographic keystream
generator was described. Later several dozen SAT instances that encode the cryptanalysis
problem for A5/1 were solved in the SAT@home volunteer computing project [PSZ12]. This
result together with other attacks on A5/1 (see [BSZK18, GKN+08, Noh10]) provides an
exhaustive argument towards not using A5/1 any more. The Bivium stream cipher [Can06]
is a popular object of algebraic and SAT-based cryptanalysis [MCP07, EPV08, SNC09,
EVP10]. In [SZ16] a SAT-based guess-and-determine attack on Bivium was proposed.
The corresponding runtime estimation turned out to be realistic for modern distributed
computing systems. The LTE stream cipher ZUC was analyzed by SAT in [LMH15]. In
[ZK17], SAT-based guess-and-determine attacks on several variants of the alternating step
generator were described. SAT-based cryptanalysis of stream ciphers from the CAESAR
competition was described in [DKM+17].

In [SZO+18] a new class of SAT-based guess-and-determine attacks was described, in
which the notion of Inverse Backdoor Set (IBS) is used. IBS is a modification of a well known
notion of Strong Backdoor Set [WGS03]. It allowed to construct the best or close to the
best guess-and-determine attacks on several ciphers. For example, the attack on 2.5-round
AES-128 with 2 Known Plaintexts, presented in [SZO+18], is significantly better than the
previously best known attack on this cipher proposed in [BDF11]. In [PSU19, PBU19],
evolutionary and genetic algorithms were used to minimize the objective function from
[SZO+18] in application to SAT-based guess-and-determine attacks on weakened variants
of the stream cipher Trivium [Can06]. Note that the function introduced in [SZO+18] to
associate with a particular IBS the estimation of effectiveness of a corresponding guess-
and-determine attack is a concretization of the notion of SAT-immunity, introduced by
N. Courtois in [Cou15, CGS12, Cou13].

As we already noted, [MZ06] was the first paper to demonstrate the applicability of SAT-
based cryptanalysis to relevant cryptographic algorithms. In that paper using the Minisat
solver [ES04] it was possible to quite effectively find single-block collisions for MD4. Using
new propositional encoding methods (in particular, the Transalg system) and state-of-the-
art SAT solvers it is possible to find preimages for MD4 and MD5 several hundred times faster
than it was done in [MZ06]. Nevertheless, on the current stage SAT-based cryptanalysis
is less effective than specialized methods (see, for example [SWOK07, Ste12, SKP16]) on
problems of finding collisions of cryptographic hash functions. However, as far as we know,
it is the SAT-based approach that yields best known preimage attacks on truncated variants
of hash functions [DKV07, Nos12, NNS+17]. In application to MD4-39, for a long time the
SAT-based preimage attack from [DKV07] was considered to be the best. In [GS18] we
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significantly improved the results from [DKV07]. It was possible for the large part thanks
to functional capabilities of the Transalg system.

7. Conclusion and future work

In this paper, we study the principles of encoding the problems of inversion of discrete
functions from a wide class to the Boolean satisfiability problem with a focus on cryptographic
applications. We provide the theoretical basis of SAT-based cryptanalysis and use it to
design the domain-specific system called Transalg for use in algebraic cryptanalysis.

In the comparison with relevant software tools for constructing propositional encod-
ings, such as CBMC, SAW+Cryptol, URSA, and Grain-of-Salt, we showed that
the Transalg encoding concepts often make it possible to build the SAT encodings of
cryptanalysis problems which are on par or better than that constructed by competitors.
From the results of our study, it follows that in the cryptographic context the overall func-
tional capabilities of Transalg match that of the CBMC system which is the recognized
leader in SAT-based Bounded Model Checking. We also show how the disctinctive features
of Transalg can be useful in algebraic cryptanalysis on the example of the applications
described in the final part of the paper.

In our opinion, Transalg often allows to make better encodings than competition
because it uses a number of techniques to reduce the redundancy of the encodings and
also employs the Boolean minimization (in form of the Espresso software tool) to make
subformulas’ representation in CNFs more compact. However, investigating this phenomenon
in detail will take a large amount of computational experiments and time to comprehend
their results. We are going to study these issues in the nearest future.

As a final comment, we would like to once more emphasize the theoretical and practical
importance of SAT-based cryptanalysis and note that the corresponding problems can
be viewed as interesting challenges for researchers. Therefore, they may stimulate the
development of new algorithms and SAT solving techniques. We believe that the results
presented in this paper will be useful in that context.
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matics in Computer Science, 3(2):159–172, Apr 2010.

[FBSK17] Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. painless-maplecomsps.
In Tomás Balyo, Marijn J. H. Heule, and Matti Järvisalo, editors, SAT Competition 2017,
volume B-2017-1, pages 26–27, 2017.

http://eprint.iacr.org/2011/626


33

[Gef73] P. Geffe. How to protect data with ciphers that are really hard to break. Electronics, 46(1):99–
101, January 1973.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
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[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A conflict-
driven answer set solver. In Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning, volume 4483 of Lecture Notes in Computer Science,
pages 260–265, 2007.

[GL97] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

[GS18] Irina Gribanova and Alexander Semenov. Using automatic generation of relaxation constraints to
improve the preimage attack on 39-step MD4. In 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO’2018), pages 1174–
1179. IEEE, 2018.

[GZK+17] Irina Gribanova, Oleg Zaikin, Stepan Kochemazov, Ilya Otpuschennikov, and Alexander
Semenov. The study of inversion problems of cryptographic hash functions from MD family using
algorithms for solving Boolean satisfiability problem. In International Conference Mathematical
and Information Technologies - MIT 2016, volume 1839, pages 98–113. CEUR-WS, 2017.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained
environments. Int. J. Wire. Mob. Comput., 2(1):86–93, May 2007.

[Hyv11] Antti E. J. Hyvärinen. Grid Based Propositional Satisfiability Solving. PhD thesis, Aalto
University, 2011.

[Ign] Alexey Ignatiev. mkplot: a Python script to create cactus and scatter plots based on matplotlib.
URL: https://github.com/alexeyignatiev/mkplot.

[IMMS18] Alexey Ignatiev, Antonio Morgado, and João P. Marques-Silva. PySAT: A Python toolkit for
prototyping with SAT oracles. In Theory and Applications of Satisfiability Testing – SAT 2018,
volume 10929 of Lecture Notes in Computer Science, pages 428–437, 2018.

[Jan12] Predrag Janicic. URSA: a system for uniform reduction to SAT. Logical Methods in Computer
Science, 8(3):1–39, 2012.

[JBH12] Matti Järvisalo, Armin Biere, and Marijn Heule. Simulating circuit-level simplifications on
CNF. J. Autom. Reasoning, 49(4):583–619, 2012.

[JJ05] Dejan Jovanovic and Predrag Janicic. Logical analysis of hash functions. In 5th International
Workshop on Frontiers of Combining Systems - FroCoS 2005, volume 3717 of Lecture Notes in
Computer Science, pages 200–215, 2005.

[JJ09] Matti Järvisalo and Tommi Junttila. Limitations of restricted branching in clause learning.
Constraints, 14(3):325–356, Sep 2009.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July
1976.

[Kro09] Daniel Kroening. Software verification. In Biere et al. [BHvMW09], pages 505–532.
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A. Detailed comparison of all considered solvers
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Figure 3. Solving cryptanalysis problem for S Geffe via different SAT
encodings (see Section 4). Part 1.
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Figure 4. Solving S Geffe cryptanalysis instances using different encodings
(see Section 4). Part 2.
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Figure 5. Solving Wolfram cryptanalysis problem via different SAT encod-
ings (see Section 4)
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Figure 6. Solving Bivium30 cryptanalysis problem via different SAT en-
codings (see Section 4).
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Figure 7. Solving Grain102 cryptanalysis problem via different SAT encod-
ings (see Section 4)
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