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ABSTRACT
Solving hard instances of the Boolean satisfiability problem (SAT) in practice is an
interestingly nontrivial area. The heuristic nature of SAT solvers makes it impossible
to know in advance how long it will take to solve any particular SAT instance. One
way of coping with this disadvantage is the Divide-and-Conquer approach when an
original SAT instance is decomposed into a set of simpler subproblems. However,
the way it is decomposed plays a crucial role in the resulting effectiveness of solving.
In the present study, we reduce the problem of choosing a proper decomposition to
a stochastic pseudo-Boolean black-box optimization problem. Several optimization
algorithms of different types were used to analyze a number of hard SAT-based
optimization problems, related to SAT-based cryptanalysis of state-of-the-art stream
ciphers. A meticulous computational study showed that some of the considered
optimization algorithms perform much better than the others in the context of the
problems from the considered class. It turned out, that the obtained results also
pose some cryptographic interest.
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1. Introduction

Black-box optimization methods have been intensively developing in the last few
decades. Such methods operate with objective functions for which the analytic form is
unknown [2]. In particular, it means that no gradient information can be obtained for
them. Nevertheless, numerous hard problems can be effectively solved by black-box
optimization algorithms. In the present paper, we study the applications of black-box
optimization methods to solving hard instances of the Boolean satisfiability problem
(SAT) [6].

SAT is one of the most well-studied problems in computer science. Despite the fact
that it is an NP-complete problem [22], in the last two decades the effectiveness of
heuristic SAT solving algorithms has significantly increased. As a result, a number of
problems from different areas, say, hardware verification, model checking and bioin-
formatics, have been effectively reduced to SAT and solved by SAT solvers [6]. One of
the areas where SAT solvers allow to obtain quite interesting results is cryptanalysis.
The corresponding approach is called SAT-based cryptanalysis [43]. We consider SAT-
based cryptanalysis instances in the context of the Divide-and-Conquer SAT solving
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approach, which implies that an original SAT instance is split into disjoint simpler
subproblems that can be solved independently (e.g. in parallel).

In [20, 45, 54, 58] a Divide-and-Conquer method was proposed that consists in choos-
ing a set of variables in a SAT instance and varying all possible assignments of their
values. Each simplified instance, obtained by substituting the corresponding assign-
ments, is then solved by a SAT solver without any time limit. Such a set of variables
can be viewed as an input of a black-box function computing a Monte Carlo-based
estimation of the runtime required for solving an original problem. It is clear that the
minimum of such a function corresponds to a set of variables that yields the smallest
runtime estimation. This function was minimized in [58] by a random search algo-
rithm. In [53], it was minimized by a tabu search algorithm and simulated annealing
algorithm. In [55], a modified SAT-based Divide-and-Conquer method was proposed,
in which a time limit for solving simplified instances is used. The corresponding mod-
ified Monte Carlo-based function was minimized by an evolutionary algorithm and a
greedy algorithm in [49, 50]. In the present paper, we study only the first mentioned
method, i.e. the one proposed in [20, 45, 54, 58]. Note, that both mentioned functions
were studied in application to SAT-based cryptanalysis. In particular, they were min-
imized by black-box optimization algorithms over the space of all possible subsets of
variables encoding the secret key of the considered cipher.

The studies performed in [53, 58] have the following drawbacks: (i) the corresponding
objective function was not described properly from the optimization point of view; (ii)
no meticulous study on which black-box optimization algorithms suit better for the
objective function was performed; (iii) no guide was proposed on how one can use the
source code of the function to minimize it on the corresponding problems using other
optimization algorithms. Apparently because of these drawbacks, the optimization
community is not aware of these hard SAT-related optimization problems. One of
the goals of the present paper is to fill this gap. The mentioned objective function
is described in detail. An improved objective function of the same type is proposed
instead. The proposed function is minimized by several optimization algorithms in
application to four hard optimization problems. These four problems, in turn, consist
in finding good runtime estimations for SAT-based cryptanalysis of four state-of-the-
art stream ciphers.

Thus, the main contributions of the paper are as follows.

(1) A new stochastic pseudo-Boolean black-box objective function for Divide-and-
Conquer SAT solving is proposed.

(2) Several pseudo-Boolean black-box optimization algorithms of different types are
programmatically implemented to study the proposed function.

(3) The experimental evaluation of the considered optimization algorithms is per-
formed on four hard SAT instances corresponding to cryptanalysis of state-of-
the-art stream ciphers.

(4) As a result of the computational study, the best known estimations for SAT-
based cryptanalysis of all considered stream cipher are obtained using the pro-
posed function.

(5) The guide on how to use the source code of the proposed objective function in
application to the considered optimization problems is presented.

This paper is organized as follows. In the next section, the preliminaries are given.
In Section 3, a new stochastic pseudo-Boolean black-box objective function is pro-
posed, that is aimed at finding decompositions with small runtime estimations for
hard SAT instances. Section 4 describes optimization algorithms that are further em-
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ployed to optimize the proposed objective function. Section 5 contains information
on the considered hard optimization problems. In Section 6, the results of computa-
tional experiments are presented. In the last sections, the results are discussed and
conclusions are drawn.

2. Preliminaries

A Boolean variable x is a variable that can take only two values x ∈ {False,True}, often
represented by {0, 1} respectively. A literal is either a Boolean variable or its negation
¬x. A sequence of literals connected by logical “or”, e.g. x1 ∨ x2 ∨ ¬x3, is called a
disjunction or a clause. It takes the value of True if and only if any of the literals takes
this value. A conjunction (logical “and”) of clauses is called a Conjunctive Normal
Form (CNF). Any Boolean formula can be represented in CNF [59]. The Boolean
satisfiability problem (SAT) in its decision variant is then formulated as follows: for
a CNF C over Boolean variables from set X = {x1, . . . , xn}, |X| = n to answer the
question whether there exists such an assignment α = (α1, . . . , αn) of variables from X
that once each variable xi is set to αi, the CNF C becomes True. If such an assignment
exists, then it is called satisfying assignment and C is called satisfiable. If there are
no assignments satisfying the formula, then the formula is called unsatisfiable.

SAT is the historically first NP-complete problem [14]. It means that it is possible to
effectively formulate the majority of combinatorial problems, which arise in practice,
in SAT form. Of course, a SAT formulation itself does not make the problem easier
to tackle. However, the progress achieved in heuristic modifications of complete SAT
solving algorithms in the recent two decades makes it possible to use them today for
solving a variety of very difficult combinatorial problems from such areas as software
verification, bioinformatics, cryptography, etc. [6]. Since technical progress leads to the
ever-more complex programs and cryptographic constructions, approaches for solving
SAT in parallel are of particular interest and importance. One such approach is called
Divide-and-Conquer and implies splitting an original SAT instance into a number
of simpler subproblems to be processed in parallel. There exist various Divide-and-
Conquer schemes, such as guiding path [65], scattering [35], Cube-and-Conquer [30],
and plain partitioning [36]. According to the approach from [20, 45, 53, 54, 58], all
possible values of a subset of variables of a given CNF are varied. In the present paper,
we study and improve this very approach. Note, that it is a special case of the plain
partitioning.

Our goal is to apply the Monte Carlo apparatus to estimating the time required
to solve all subproblems constructed by splitting an original SAT instance. In order
to do this, certain conditions should be satisfied. For example, the hardness of the
subproblems should vary in reasonable limits in order for the Monte Carlo method
to work. Hereinafter, we decompose the SAT instances as follows. Assume that C is
a Boolean formula in CNF over a set X of Boolean variables. Now suppose that a
subset S is specified such that S ⊆ X, |S| = k, k ≤ n. The general idea is that
we process all instantiations of variables from S by substituting their values into C,
and solve the simplified problems. By assigning values α = (α1, . . . , αk) to variables
forming S we obtain a simplified formula denoted as C[S/α]. Let us refer to a set
of simplified formulas produced by assigning all possible different combinations of
values to variables from S in C as to decomposition of C. Hereinafter we denote
it as DS [C] = {C[S/α], α ∈ {0, 1}|S|}. It is easy to see that |DS [C]| = 2k. The
decomposition is formed by formulas that differ from each other only in values of
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variables from S. Then it is natural to assume that they all are weakened more or
less similarly compared to the original instance. In fact, this assumption may not
hold true for an arbitrary Boolean formula in CNF, but it holds for a wide classes of
problems, e.g. the ones arising in cryptanalysis. We will cover this question in more
detail below. The very important feature of the plain partitioning approach is that the
instances that comprise a decomposition can be processed independently in parallel.
If an original formula is unsatisfiable, then all the problems from a decomposition will
have to be solved, otherwise as soon as a satisfying assignment is found for at least
one simplified problem, it means that we successfully constructed the solution for the
original problem.

The technique used to construct a decomposition allows one to use the Monte Carlo
method [47] to estimate the time required to solve all problems from a decomposition
by solving a small sample of them and extrapolating the result to the whole. While
this runtime estimation is very helpful by itself, an important fact is that finding a set
S to decompose a problem that yields a reasonably small runtime estimation is a very
hard task. Implicitly, finding such a set for a SAT variant of a cryptanalysis instance is
equivalent to constructing a guess-and-determine attack on the corresponding cipher
[5]. Some SAT instances with a well understood structure may allow to choose a good
S based on some key features of the original problem (see, e.g. [54, 62]). However, it
is not always a possible or practical course of actions. In [53], it was proposed to view
the process of finding good subsets for decomposing hard SAT instances as a process
of minimizing a special black-box objective function. The structure and the features
of this function are discussed in the following section.

3. Objective function

The objective function and its variants discussed in the present section serve the fol-
lowing purpose: for a specific SAT instance and its decomposition induced by some
set of variables, to estimate the time required to solve all subproblems from the de-
composition using a specific solver. Below we formalize this principle.

Let us recall that we consider a Boolean formula in CNF as a SAT instance. We
denote it by C, and the Boolean variables appearing in C as X, |X| = n. Assume
that we have a SAT solver A and an integer N that is used to denote a random
sample size. The set S, S ⊆ X is used to construct a decomposition DS [C] (see the
previous section). We use the Monte Carlo method [47] in the following way. First,
a random sample R is constructed by randomly choosing N instances from DS [C]:
R = {C[S/β1], . . . , C[S/βN ]}, βi ∈ {0, 1}|S|, i = 1, . . . , N . To calculate the function’s
value for S, the solver A is launched on each subproblem from R. The runtime of A
on C[S/βi] (in seconds) is denoted by TA(C[S/βi]). Then the value of F is computed
as follows:

FN,C,A(S) = 2|S| × 1

N
×

N∑
i=1

TA(C[S/βi]). (1)

The value of F for the given C and S is an estimation of the time (in seconds) required
to solve SAT for C via solving all subproblems from DS [C] by the solver A. Note, that
any possible input S can be viewed as a Boolean vector of size n, such that its i− th
element is 1 if i ∈ S, and 0 otherwise. It is clear that an arbitrary Boolean vector of size
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n corresponds to some S. Therefore, the function (1) maps {0, 1}n onto R, so (1) is a
pseudo-Boolean function. The function (1) is stochastic since its values are computed
using the Monte Carlo method. Since SAT solvers are essentially heuristic engines, and
the fact that computing a value of (1) consists in the observation of their behaviour,
it follows that there is no analytic form for (1). Also, it is very costly to compute
its values because processing SAT instances from a random sample can actually take
an arbitrarily large amount of time. To summarize, (1) is a stochastic costly pseudo-
Boolean black-box function. Thus, the spectrum of optimization algorithms that can
be used to optimize it is actually quite limited. We will touch this question in more
detail in the next section.

Note, that a direct implementation of the outlined algorithm for computing function
(1) (as it was done in, e.g. [53]) is not practical from the point of view of contemporary
SAT solving techniques. The vast majority of state-of-the-art SAT solving algorithms
are based on the Conflict-Driven Clause Learning (CDCL) algorithm [57] that imple-
ments depth-first search in a decision tree, augmented with backjumping, heuristics
and the so-called clause learning. According to clause learning, when a variable value
at the currently observed node of the search tree leads to derivation of information that
contradicts the previous search history, this fact is used to construct a conflict clause
which is added to a special database. The similar approach is employed by branch-
and-bound algorithms [41]. Due to the fact that the subproblems in DS [C] differ only
in the values of variables from S, it is possible to naturally organize the solving of
groups of these instances in such a way that the information (conflict clauses) derived
when solving earlier instances can be used to help solve the currently processed ones.
This approach is usually referred to as incremental SAT solving [19] and is widely em-
ployed in Divide-and-Conquer solving of hard SAT instances (see, e.g. [31]). If we draw
a parallel with Branch and Bound, it means that it is possible to reuse the information
about some of the evaluated branches for one subproblem when solving another.

In practice, it means that when the instances from a decomposition are processed,
they should be grouped in such a way that the profit from re-used information is maxi-
mized, i.e. instantiations of variables from S used to form them should be close to each
other in {0, 1}|S| to preserve locality. Note, that in [53] the values of (1) were computed
without using incremental SAT solving, but the processing of decompositions aimed
at solving the corresponding hard SAT instances were performed via incremental SAT.
Thus, there was a clear diasgreement between the method used during computation of
(1) and the method used during solving the subproblems from a decomposition found
as a result of minimization of (1).

To make things better, it is necessary to construct random samples in a more so-
phisticated manner during the minimization of (1), e.g. in a way proposed in [62].
Instead of randomly choosing βi ∈ {0, 1}|S|, i = 1, . . . , N , we can choose u, v << N ,
such that u×v = N . Then we pick β1, . . . , βu at random and for each βj , j = 1, . . . , u,

βj ∈ {0, 1}|S|, construct sets Bj = {βj , β1j , . . . , β
v−1
j } by choosing v − 1 points from

their neighbourhoods in {0, 1}|S|. It is possible to define the neighbourhood by different
means. The way used by us is described further. When the SAT solver A solves the sub-
problems, it processes them incrementally in groups centered around their respective
βj . Let us denote the time required by A to incrementally process the neighbourhood
Bj by T IA(Bj) = T IA({C[S/βhj ], βhj ∈ Bj}). Then the modified objective function will
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look as follows:

GN,C,A,u(S) = 2|S| × 1

N
×

u∑
j=1

T IA({C[S/βhj ], βhj ∈ Bj}). (2)

Note that the Monte-Carlo method is used to calculate (2), as well as that for (1).
Moreover, the function (2) can be viewed as a special case of (1). In opposite to (1),
here the random sample size is u. During the minimization of (2) the subproblems
from a sample are solved in the same way (incrementally) as in the process of their
solving during the processing of a whole decomposition.

The method for constructing random samples in a way that makes it possible to
harness the potential of incremental SAT solving was described in [39, 62]. It implies
that the points βhj , h = 1, . . . , v − 1 are picked according to the following procedure.
Note that if we fix the order of variables (e.g. in an ascending order), then there is
a clear one-to-one correspondence between each point β ∈ {0, 1}|S| and a number
0 ≤ pβ ≤ 2|S| produced as a result of interpreting the sequence of 0 and 1 forming
β as a binary number. The procedure starts from pβj

and increments this number
until specific boundary conditions are satisfied. So it processes pβj

, pβj
+ 1, pβj

+ 2, . . .,
etc. An important fact is that it is possible to use a polynomial algorithm to check
whether a point, corresponding to pβj

+ k results in a very simple subproblem. For
this purpose the SAT-solver is launched in a special mode, that applies only the Unit
propagation rule [17] to such a point (in particular, we add to the original CNF C the
unit clauses, corresponding to values defined by point β and apply Unit propagation
rule to the obtained SAT instance). Since the processing is performed incrementally,
it essentially works as a DPLL algorithm [17]. As a result, the procedure constructs a
sample which has only nontrivial subproblems in it, thus greatly improving the quality
of the Monte Carlo estimation. In particular, it allows to deal with the situations, when
the value of a variable is implied by a partial assignment of several other variables. For
example, if S contains such x1, x2, x3 for which in the SAT instance C there is (among
others) the subformula equivalent to x1 ⊕ x2 ⊕ x3 ≡ 1 (⊕ is the addition modulo 2
so the formula can be read as “sum of x1, x2, and x3 modulo 2 should always be
equal to 1”), then the effective size of decomposition DS [C] is ≤ 2|S|−1. Thus, if one
constructs a random sample by picking assignments at random from {0, 1}|S|, in about
half the cases there will be assignments that contain the values of x1, x2, x3 such that
x1 ⊕ x2 ⊕ x3 ≡ 0 results in an easy contradiction. The equations of this kind can
be found in many cryptographic algorithms, such as Bivium and Trivium [10]. The
procedure from [39, 62] makes it possible to filter out the assignments of variables
corresponding to trivial subproblems of this kind and put into the random sample
only the subproblems that are not trivially resolved.

In [62], we analyzed the alternating step (ASG) generator [25] by SAT-based crypt-
analysis. We employed a simple tabu search-based algorithm to minimize functions
(1) and (2) and used the found sets to solve several cryptanalysis instances for ASG
with 72-bit and 96-bit secret keys. The estimations obtained using (1) turned out to
be highly inaccurate: sometimes they were several times larger, and sometimes lower,
than the real runtime. The results obtained using (2), augmented with preprocessing of
random samples, yielded the sets with better estimations and for which the difference
between the real runtime and the estimation was less than 20% in all cases. Based on
this we make a conclusion that the function (2) augmented with additional processing
of random samples allows to significantly improve the quality of estimations provided
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by objective function’s values, while not requiring significant additional resources. Ac-
cording to these results, function (2) is more accurate than function (1). In this study,
only function (2) is used in application to hard SAT-based optimization problems.

4. Optimization algorithms

The objective function G proposed in Section 3 can be minimized by any combinatorial
black-box optimization algorithm. In this section, we consider 8 algorithms of different
types that are suitable for this purpose:

(1) simple random search (SRS);
(2) oriented random search (ORS);
(3) simple hill climbing (SHC);
(4) steepest ascent hill climbing (SAHC);
(5) tabu search (TS);
(6) hill climbing with variables-based jump (HCVJ);
(7) (1+1) evolutionary algorithm ((1+1)-EA);
(8) sequential model-based algorithm configuration (SMAC).

Some features of these algorithms are shown in Table 1. Here we used the classi-
fication from the survey [7]. The term memory usage means that the algorithm uses
either short or long memory to store the search history. The term trajectory means
that a successor solution is sought in a neighbourhood of the current solution.

Table 1. Some features of the optimization algorithms chosen to minimize the objective function.

Algorithm Stochastic Memory usage Trajectory-based

SRS Yes No No
ORS Yes No No
SHC No No Yes
SAHC No No Yes
TS No Yes Yes
HCVJ No Yes Yes
(1+1)-EA Yes No No
SMAC Yes Yes No

Assume that C is a CNF over a set of Boolean variables X, |X| = n. Hereinafter
by a point of the search space we mean a set S, S ⊆ X. By Gbest and Sbest the best
found value of the objective function G and the corresponding point are denoted. Let
us give an overview of the employed algorithms below.

The simple random search algorithm randomly chooses points in the whole search
space and calculates objective function values for them. Gbest and Sbest are updated if
a new value is better than the current best known one. The pseudo-code is shown in
Algorithm 1.

The oriented random search algorithm starts from the given starting point Sstart, in
the role of which the whole set X can be used. The value of G is calculated for Sstart,
then its value is calculated for randomly chosen points of size |Sstart| − 1 until at any
of them Gbest is updated or the time limit is exceeded. If Gbest is updated, then the
algorithm starts processing randomly chosen points of size |Sstart| − 2 and so on. As a
result, the algorithm is oriented to decreasing the size of the best point.
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Algorithm 1: Simple random search

Input: CNF C over X, solver A, random sample size N , number of intervals u,
time limit t

Output: Sbest with the runtime estimation Gbest
1 Sbest ← ∅
2 Gbest ← 0
3 repeat
4 S ← RandomlyChoosePoint(X)
5 g = GN,C,A,u(S)
6 if g < Gbest or Sbest = ∅ then
7 Gbest ← g
8 Sbest ← S

9 until TimeExceeded(t)
10 return 〈Sbest, Gbest〉

The next four algorithms are all trajectory-based: simple hill climbing, steepest as-
cent hill climbing, tabu search, and hill climbing with variables-based jump. They all
operate with neighbourhoods of points from the search space. Each possible subset S
of the set of Boolean variables X, |X| = n, corresponds to a Boolean vector of length n
(see Section 3). It is quite natural to operate with the Hamming distance [26] between
the corresponding Boolean vectors to form a neighbourhood. Further, a neighbour-
hood of a given point S is defined as a set of points, for which their representation as
Boolean vectors are at Hamming distance at most H from the Boolean representation
of S. The value of H used in our experiments is discussed in Section 6.

Algorithm 2: Simple hill climbing

Input: CNF C over X, time limit t, solver A, random sample size N , number of
intervals u, starting point Sstart, Hamming distance H

Output: Sbest with the runtime estimation Gbest
1 Sbest ← Sstart
2 Gbest ← GN,C,A,u(Sstart)
3 Scentre ← Sstart
4 repeat
5 NewOptimum ← false
6 for each S ∈ GetNeigbourhood(Scentre, H) do
7 g = GN,C,A,u(S)
8 if g < Gbest then
9 Gbest ← g

10 Sbest ← S
11 Scentre ← S
12 NewOptimum ← true
13 Break

14 until TimeExceeded(t) or NewOptimum = false
15 return 〈Sbest, Gbest〉

The simple hill climbing algorithm (see, e.g. [52]), processes points from the neigh-
bourhood of a given starting point in some order. It calculates the objective function’s
value for each point and as soon as it finds a point with a better function value, the
algorithm immediately starts checking the neighbourhood of this better point and so
on. If all points from a neighbourhood are worse than the current Sbest, then a local
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minimum is reached and the algorithm stops. Algorithm 2 shows its pseudo-code. The
function GetNeigbourhood(S,H) returns all points from the neighbourhood of S, which
are at Hamming distance at most H from it.

The only difference between simple hill climbing and steepest ascent hill climbing
(see, e.g. [52]) is that the latter calculates objective function values for all points from a
current neighbourhood even if Gbest has been already updated in this neighbourhood.
Thus it always transitions to the best point in a neighborhood. The pseudo-code of
this algorithm can be obtained by removing line 13 from Algorithm 2.

The Tabu search was proposed in [24]. We implemented a tabu search algorithm
on the basis of the steepest ascent hill climbing. A tabu list is used, where the last
1000 best points from the checked neighbourhoods are stored. If a local minimum is
reached, the search does not stop. Instead, the best point from the neighbourhood is
chosen, and the the processing of its neighbourhood is started. Algorithm 3 shows the
corresponding pseudo-code. The function GetAdmittedNeighbours returns all points
from the neighbourhood of a given point, which are not in the tabu list. The function
UpdateTabuList adds a given point to the top of the tabu list. If the limit on the tabu
list size is reached, UpdateTabuList removes the last point from the tabu list before
adding a new one. By Scandidate and Gcandidate we denote the best admitted point from
the current neighbourhood and the function’s value for it.

Algorithm 3: The tabu search algorithm

Input: CNF C over X, time limit t, solver A, random sample size N , number of
intervals u, starting point Sstart, Hamming distance H

Output: Sbest with the runtime estimation Gbest
1 Sbest ← Sstart
2 Gbest ← GN,C,A,u(Sstart)
3 Scentre ← Sstart
4 repeat
5 AdmittedPoints← GetAdmittedNeighbours(Scentre, H,TabuList)
6 if AdmittedPoints = ∅ then
7 Break

8 Scandidate ← ∅
9 Gcandidate = Gbest

10 for each S ∈ AdmittedPoints do
11 g = GN,C,A,u(S)
12 if Scandidate = ∅ or g < Gcandidate then
13 Scandidate ← S
14 Gcandidate ← g

15 if Gcandidate < Gbest then
16 Gbest ← Gcandidate
17 Sbest ← Scandidate

18 UpdateTabuList(Scandidate,TabuList)
19 Scentre ← Scandidate
20 until TimeExceeded(t)
21 return 〈Sbest, Gbest〉

The hill climbing with variables-based jump algorithm was proposed in [39, 63]. It is
the simple hill climbing algorithm, improved by a jump strategy that helps to escape
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local minima. According to this strategy, for each of n Boolean variables from X two
counters are used. The first one counts how many times a variable occurred in points,
for which the objective function was calculated. The second one counts how many
times a variable occurred in points in which Sbest was updated. If a local minimum
is reached, then a new starting point is constructed by adding 2m Boolean variables
to the current Sbest. Among them, m variables are the ones with the lowest values of
the first counter. In the role of another m variables the ones with the greatest value
of the second counter are chosen. As a result, new variables are tried, which can be
quite promising. On the other hand, successful variables are added. In all experiments
described in Section 6, m was equal to 4. The pseudo-code is shown in Algorithm 4.
Functions UpdateFirstCounter and UpdateSecondCounter update the first and second
counter respectively. The function ConstructNewStartPoint constructs a new point as
it was described above. Additionally, all points for which the objective function was
calculated are added to a tabu list, because this algorithm is oriented on the function
G which is extremely costly.

Algorithm 4: Hill climbing with variables-based jump

Input: CNF C over X, time limit t, solver A, random sample size N , number of
intervals u, starting point Sstart, jump paramter m, Hamming distance H

Output: Sbest with the runtime estimation Gbest
1 Sbest ← Sstart
2 Gbest ← GN,C,A,u(Sstart)
3 Scentre ← Sstart
4 repeat
5 AdmittedPoints← GetAdmittedNeighbours(Scentre, H)
6 if AdmittedPoints = ∅ then
7 Break

8 NewOptimum ← false
9 for each S ∈ AdmittedPoints do

10 g = GN,C,A,u(S)
11 UpdateTabuList(S)
12 UpdateFirstCounter(S)
13 if g < Gbest then
14 Gbest ← g
15 Sbest ← S
16 Scentre ← S
17 UpdateSecondCounter(Sbest)
18 NewOptimum ← true
19 Break

20 if NewOptimum = true then
21 Scentre ← Sbest

22 else
23 Scentre ← ConsrtuctNewStartPoint(Sbest,m)

24 until TimeExceeded(t)
25 return 〈Sbest, Gbest〉

An (1+1) evolutionary algorithm was implemented in accordance with its descrip-
tion from [18]. The only difference is that here it starts from a given point. The
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function BoolVecFromPoint returns a Boolean vector representation (of size n) of a
given point S. The function PointFromBoolVec returns a point from a given Boolean
vector of size n. The function RandomlyFlipVectorElements flips independently each
element of a given Boolean vector of size n with probability 1/n. Algorithm 5 shows
the pseudo-code.

Algorithm 5: The (1+1) evolutionary algorithm

Input: CNF C over X, solver A, random sample size N , number of intervals u,
starting point Sstart, time limit t

Output: Sbest with the runtime estimation Gbest
1 Sbest ← Sstart
2 Gbest ← GN,C,A,u(Sstart)
3 Scentre ← Sstart
4 repeat
5 x← BoolVecFromPoint(Sbest)
6 x′ ← RandomlyFlipVectorElements(x)
7 S ← PointFromBoolVec(x′)
8 g = GN,C,A,u(S)
9 if g < Gbest then

10 Gbest ← g
11 Sbest ← S

12 until TimeExceeded(t)
13 return 〈Sbest, Gbest〉

Sequential model-based algorithm configuration (SMAC) [34] is an implementation
of the sequential model-based optimization (SMBO) framework [38]. According to
SMBO, a regression model is constructed that predicts values of an objective function
and then this model is used for optimization. SMAC is based on the random forest
machine learning algorithm [9]. In SMAC, random forest contains regression trees
that have real values (values of the objective function) at their leaves. Every time a
new value of the objective function is calculated, a random forest is reconstructed. In
fact, random forest recommends the points for which the objective function should be
calculated. SMAC can be used either for tuning algorithm parameters or for optimizing
costly black-box functions.

5. Considered problems

To compare algorithms from Section 4 when minimizing the objective function (2),
we considered four hard optimization problems. Each of them is related to a certain
stream cipher. The required background on such relation as well as the descriptions
of the optimization problems are presented below.

Any stream cipher (with some reservations) can be considered as a discrete function
that transforms an input called secret key into an output called keystream [46]. Stream
ciphers are usually used to quickly encrypt large amount of online data, e.g. phone
calls. The encryption is performed by combining the produced keystream with a plain
text (an original data). Stream ciphers are designed in such a way, that given a secret
key, the corresponding keystream is produced very fast. Moreover, the algorithms
are created specifically to make it extremely hard to find the input corresponding to
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any given output (i.e. such discrete functions are hard to invert). Each stream cipher
consists of one or several registers, where the internal state of the cipher is stored.
First, given a secret key, the initialization phase is performed to fill the registers
with nontrivial contents. Then, using the registers’ state, the keystream is produced.
Usually, the following variant of the cryptanalysis of stream ciphers is considered:
given a known keystream fragment to find the registers’ initial state that was used
to produce this keystream fragment (see, e.g. [44]). Basically, it allows one to forgo
the initialization phase at a cost of having to find the unknown values for the whole
contents of ciphers registers (at the beginning of keystream generation) instead of the
secret key itself (which is typically smaller than the size of registers). In the present
study, this very variant of the cryptanalysis is considered in application to the following
stream ciphers: Trivium [10], Grain v1 [29], Mickey [3], and Rabbit [8]. They are
the finalists of the eSTREAM project [12] that was completed in 2008. This project
was organized by European cryptological community and was aimed at identifying new
fast and resistant stream ciphers. Thus, the eSTREAM’s finalists can be considered
as state of the art in the area of stream ciphers.

The characteristics of the considered stream ciphers are presented in Table 2, to-
gether with sizes of the analyzed keystream fragments.

Table 2. Characteristics of the considered stream ciphers. All sizes are presented in bits.

Cipher Secret key size Registers size Analyzed keystream size

Trivium 80 288 300
Grain v1 80 160 200
Mickey 80 200 250
Rabbit 128 513 512

We studied the cryptanalysis of outlined ciphers in SAT form. This type of crypt-
analysis is called SAT-based cryptanalysis [15, 43]. According to it, an original problem
is reduced to SAT by generating the corresponding CNFs which are in turn processed
(after some additional modifications) by some SAT solving algorithm.

It is possible to construct CNFs for SAT-based cryptanalysis directly or using the
following tools: CBMC [11]; URSA [37]; Transalg [48]; CryptoSAT [40]. In the present
paper, we used the Transalg tool because it recently showed good results in ap-
plication to SAT-based cryptanalysis of stream ciphers [56]. Transalg uses a C-like
language to describe a considered problem. Thus, thanks to the fact that eSTREAM
candidates provided a C-implementation for each generator, it was relatively simple to
transform the latter into programs for Transalg and test their correctness. Details
on obtained CNFs are presented in Table 3.

Table 3. Characteristics of CNFs of the considered cryptanalysis problems.

Cipher Variables Clauses Size (Mb)

Trivium 1 887 22 776 0.5
Grain v1 2 425 47 702 1.4
Mickey 72 078 586 080 15.7
Rabbit 98 449 879 713 23.7

Note, that each of these CNFs encodes the corresponding algorithm of a stream
cipher. The constructed CNFs, once the values of the keystream bits are fixed in them
by assigning values to corresponding Boolean variables, form cryptanalysis instances.
They can be viewed as very hard combinatorial problems. The function (2) together
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with the algorithms we use to minimize it, makes it possible to estimate the time
required to solve these problems. It means, that as result of minimizing objective
function (2), it is possible to obtain valuable results (from cryptographic point of view).
Thus, we studied 4 hard stochastic pseudo-Boolean black-box optimization problems.

It is important to notice that each CNF from Table 3 has more than a thousand vari-
ables. However, the fact that we consider the cryptanalysis instances makes it possible
to reduce the search space quite significantly. Note that the initial values of registers’
state (which we actually have to find in order to solve a cryptanalysis problem) are
more important compared to all the other Boolean variables in the formula. Let us
refer to them as to input variables. It is clear that the values of all the other variables
in CNF formula depend on the values of input variables because the cryptographic al-
gorithm basically transforms them this way and that in a multistage manner to finally
produce keystream. Thus, we can greatly reduce the search space by limiting it to only
include all possible subsets of a set of input variables. A side benefit of this treatment
is that the hardness of produced subproblems is usually quite uniform, leading to a
better consistency of estimations.

Thus, in the computational experiments the objective function (2) is minimized over
the search spaces of the following sizes: 2288 for Trivium; 2160 for Grain v1; 2200 for
Mickey; 2513 for Rabbit.

Note, that the proposed objective function can be applied not only to SAT-based
cryptanalysis. In [39], we successfully employed it for solving hard SAT instances used
in SAT competitions to compare parallel SAT solvers. In particular, a Divide-and-
Conquer approach based on the optimization of function (2) showed good effectiveness
on several classes of hard crafted benchmarks.

6. Computational experiments

The proposed objective function G (see Section 3) was implemented as a module
of the ALIAS tool [39]. This tool is aimed at solving hard SAT instances via the
partitioning approach described in Section 2. The guide on how to use the source code
of the proposed objective function in application to hard SAT instances is available
online [1], see the item “HOW TO USE THE OBJECTIVE FUNCTION”. To calculate
the objective function, ALIAS operates with incremental SAT solvers via the IPASIR
interface [4]. In all experiments described below, the IPASIR-based version of the SAT
solver rokk [61] was used because it recently has shown good results on SAT-based
cryptanalysis problems (see, e.g. [48, 53, 55, 62]).

As for the function’s parameters, in all experiments N, u, v were equal to 1000000,
100, and 10000 respectively. The Hamming distance H was equal to 1. It means that
only “add/remove” type of state transition was allowed in the trajectory-based opti-
mization algorithms (i.e. for 4 out of 8 of them, see Section 4). Indeed, H = 2 would
allow several additional transitions, including “replace”. However, according to our
preliminary experiments, H = 2 makes it impractical to use the steepest ascent hill
climbing and the Tabu search algorithms. The reason is that in both these algorithms
it is required to check all points in the current neighbourhood, and for all four con-
sidered optimization problems the search spaces are too large for this. The employed
function is extremely costly, that is why such neighbourhoods are way too large.

We studied four optimization problems described in Section 5. All optimization
algorithms described in Section 4, except SMAC, were implemented in C++ as a part
of the ALIAS module responsible for the objective function minimization. In case of
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SMAC, we used its implementation in Java described in [33].
As a starting point Sstart for every algorithm, except SRS, we used a set of Boolean

variables that encodes the initial states of the corresponding stream cipher’s registers
(see Table 2). For example, for the Mickey cryptanalysis it was a set of 200 Boolean
variables x1, x2, ..., x200. Such a starting point is very convenient, because the objective
function is computed effectively on it (according to the features of stream ciphers). As
a result, a baseline runtime estimation can be easily calculated. It is important because
for an arbitrary point from the search space it is not always possible to compute values
of functions (1)-(2) in reasonable time.

Some of the implemented optimization algorithms are not stochastic (see Section 3).
However, the objective function itself is stochastic, so each optimization algorithm was
run 3 times on each optimization problem to alleviate the effect of randomness. Thus,
4×8×3 = 96 computational experiments were performed in total. Each experiment was
launched with the time limit of 1 day on one node of the computing cluster “Academi-
cian V.M. Matrosov” [13]. Every computational node of the cluster is equipped with 2
× 18-core Intel Xeon E5-2695 CPUs and 128 Gb of RAM. Thus, each experiment was
held on 36 CPU cores. At any moment of time each implemented optimization algo-
rithm operates with exactly one point from a search space, but the implementation of
the objective function is a multi-threaded program, so all 36 CPU cores are employed
to calculate its value.

Since SAT solvers are essentially heuristic algorithms, they can work for a very long
time during the calculation of the objective function value in some point. That is why
the time limit on the SAT solver runtime was used. If for any subproblem from a
random sample (see Section 3) the SAT solver’s runtime exceeded the imposed time
limit, the processing of the sample was interrupted with the objective function value
set to plus infinity. The time limit of 10 seconds was used in all the experiments.
According to the recent studies ([62, 64]) it should be sufficient. Note, that in opposite
to [55], we use the runtime limit only to calculate Monte-Carlo estimations. When the
found set of variables is used to solve an original problem, the runtime is not limited.

It turned out, that SMAC can not deal with the Rabbit optimization problem
at all, because its maximum available objective function value is lower than baseline
estimations for this cipher. SMAC uses double data type in Java to store the function
value, so when it exceeds 1e+100, its behaviour is undefined. Of course, we could
handle it by making a modified implementation that takes the logarithm of objective
function’s values. However, since SMAC showed quite weak results for the remaining
three problems, we did not do it. That is why SMAC’s results for Rabbit are absent.

For each problem, the found solution that corresponds to the best run among all
optimization algorithms is presented in Appendix A. In Appendix B, the detailed
results for every run are shown. In Table 4, for each pair (algorithm, problem) the
result of the best run (out of 3) is shown. In Figure 1, the minimization process for
the best run of each optimization algorithm (except SMAC) is shown. Here x-axis
corresponds to the time in seconds elapsed since the algorithm start, while y-axis
corresponds to the objective function’s values for Sbest.

Let us discuss the obtained results. Both considered random search algorithms (SRS
and ORS) showed quite weak results. ORS outperforms SRS on all problems, but its
results are not competitive either. However, these algorithms can be used as a baseline
to distinguish the algorithms which are better than random search from those that
are not. Further “algorithm A is better than algorithm B” means that the value of the
objective function, found by A in its best run (out of 3) is lower than that for algorithm
B. It makes sense to say that an algorithm suits for a certain problem, if it is better
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Table 4. Results of the best runs (out of 3) for each pair (algorithm, problem). The best result for every

problem among all algorithms is marked with bold.

Algorithm Grain v1 Mickey Trivium Rabbit

SRS 1.46e+32 3.58e+54 7.67e+46 3.44e+150
ORS 9.88e+31 4.29e+53 3.34e+45 1.38e+149
SHC 1.36e+31 8.2e+52 8.59e+41 6.5e+140
SAHC 2.58e+31 1.75e+50 5.43e+43 2.64e+149
TS 2.96e+30 2.11e+50 4.46e+43 1.08e+152
HCVJ 4.04e+30 8.18e+50 2.46e+41 1.52e+142
(1+1) 3.73e+30 2.46e+47 7.15e+40 5.91e+145
SMAC 1.98e+33 1.36e+54 2.12e+46 -

 1x10
30

 1x10
32

 1x10
34

 1x10
36

 1x10
38

 1x10
40

 1x10
42

 1x10
44

 1x10
46

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

(1+1)EA
HCVJ
ORS

SAHC
SHC
SRS

TS

(a) Grain v1

 1x10
46

 1x10
48

 1x10
50

 1x10
52

 1x10
54

 1x10
56

 1x10
58

 1x10
60

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

(1+1)EA
HCVJ
ORS

SAHC
SHC
SRS

TS

(b) Mickey

 1x10
40

 1x10
45

 1x10
50

 1x10
55

 1x10
60

 1x10
65

 1x10
70

 1x10
75

 1x10
80

 1x10
85

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

(1+1)EA
HCVJ
ORS

SAHC
SHC
SRS

TS

(c) Trivium

 1x10
140

 1x10
142

 1x10
144

 1x10
146

 1x10
148

 1x10
150

 1x10
152

 1x10
154

 0  10000 20000 30000 40000 50000 60000 70000 80000 90000

(1+1)EA
HCVJ
ORS

SAHC
SHC
SRS

TS

(d) Rabbit

Figure 1. Minimization of the objective function on the considered problems. The x-axis corresponds to the
time in seconds elapsed since the algorithm start, y-axis corresponds to the objective function’s values for Sbest.

than both SRS and ORS. It turned out, that SMAC is unsuitable for all considered
problems. As for the remaining 5 algorithms (SHC, SAHC, TS, HCVJ, (1+1)-EA),
their results showed that the algorithms diversity makes sense for the problems of
the considered type. SAHC showed competitive results, but it does not suit for hard
and relatively large problems, like Rabbit. TS found the best value of the objective
function on Grain v1, but it does not suit for Rabbit too. The main reason is that
both SAHC and TS thoroughly traverse neighbourhoods (see Section 4). In the case of
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Rabbit, the neighbourhoods are large, and the calculations of the objective function
in the corresponding points takes a lot of time, because the original problem itself is
extremely hard for SAT solvers. Note, that if we used H = 2, SAHC and TS would
show much worse results.

It turned out, that SHC and SAHC usually do not reach the time limit on the
experiment (24 hours) because both algorithms stop once a local minimum is found.
Despite its simplicity, SHC showed competitive results, and it also found the best
value of the objective function on Rabbit. Note, that this was achieved in a short
time, because SHC stopped after finding a local minimum in all three runs and it
happened before reaching the time limit. HCVJ and (1+1)-EA are the two algorithms
that showed competitive results on each problem. It seems, that further improvements
of SHC by various jumping strategies has great potential for the considered class of
problems. Overall, the best results were shown by (1+1)-EA – it found the best values
of the objective function for 2 out of 4 considered problems.

According to the best obtained estimations, all considered problems are way too
hard, so the accuracy of the estimations can not be verified in reasonable time. Fol-
lowing [53], we studied weakened SAT-based cryptanalysis problems for the considered
stream ciphers by assigning correct values to a portion of input variables. In particular,
we assigned values to k (out of n) last input variables. In such a weakened variant,
the first n − k input variables are unknown, thus, a set Sbest is picked from the set
of all possible subsets of {x1, . . . , xn−k}. Our goal was to find such weakened variants
that, according to estimations, can be solved faster than in one day on a single clus-
ter node. The second requirement was that n − k ≥ 64 because we wanted to study
cryptanalysis problems that are too hard for brute force. To find the estimations we
used the (1+1)-EA algorithm. It was launched for 1 hour on each considered weakened
variant. It turned out that for Rabbit and Mickey the suitable weakened variants
correspond to n−k < 64, that is why we did not study them further. As for Grain v1
and Trivium, we found suitable weakened variants with k = 96 and k = 134 respec-
tively, i.e. Sbest was picked from subsets of {x1, . . . , x64} and {x1, . . . , x154}. The found
estimation for Grain v1 is 842477 seconds for 1 CPU core, i.e. 23402 seconds or 6
hours 30 minutes for 36 CPU cores. The corresponding set contains the following 22
variables (numeration from 1): 9, 11, 12, 13, 19, 21, 25, 26, 27, 29, 39, 43, 44, 45, 48, 52,
53, 56, 59, 60, 62, 64. Using this set, three randomly generated weakened SAT-based
cryptanalysis problems were successfully solved on one cluster node. It means that
satisfying assignments were found from which the correct values of the first 64 input
variables were extracted. The maximum runtime was 4 hours 44 minutes with 78% of
the subproblems out of 222 being processed. As for Trivium, the found estimation is
368648 seconds for 1 CPU core, i.e. 10240 seconds or 2 hours 51 minutes for 1 cluster
node. The corresponding set consists of the following 26 variables: 7, 10, 23, 25, 34,
38, 40, 49, 61, 62, 63, 64, 65, 67, 75, 77, 78, 103, 104, 105, 106, 120, 121, 130, 142, 151.
Three weakened SAT-based cryptanalysis problems were solved on one cluster node,
the maximum runtime was 1 hour 22 minutes with 51% of the subproblems being
processed. Since all such estimations correspond to processing 100% of subproblems,
the estimations for both analyzed weakened problems are accurate.

7. Discussion

Since a lot of optimization problems in practice do not have clearly defined objective
functions, or imply that they are specified by unconventional means, the black-box
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optimization methods have been flourishing in the last several decades. However, a
lot of them are designed to deal only with continuous variables. For instance, it holds
true for Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [27], Hooke-
Jeeves method [32], pseudo-gradient approach [21] and a variety of coordinate descent
techniques. Nevertheless, there are plenty of search strategies that work well with
discrete variables. Generally speaking, each objective function considered in this study
can be minimized by genetic algorithms [60], as well as variable neighborhood search
methods [28] or other discrete black-box optimization algorithms (see, e.g. [7, 23]). In
the future we plan to extend the spectrum of applicable algorithms and study how
they work with optimizing functions that estimate the runtime of hard SAT instances.

The attempts to bring optimization methodology into SAT-based cryptanalysis are
also nothing new. In [42], a stochastic local search algorithm was used to solve hard
SAT-based cryptanalysis for the DES block cipher. Implicitly, the objective function
(1) was employed to analyze the GOST block cipher and several keystream generators
(Crypto-1, Hitag2, A5/1, Bivium) in [16, 20, 45, 54, 58], but in these papers the sets
for decomposing an original SAT instance were constructed manually. In [53], the SAT-
based cryptanalysis of the A5/1, Bivium and Grain stream ciphers were considered
as optimization problems, which in turn were solved by a tabu search algorithm. In
fact, the objective function minimized in that paper is the objective function (1).
In [55], a completely different objective function that is constructed specifically for
cryptographic problems was minimized by the optimization algorithm from [53] to
analyze the Magma and AES-128 block ciphers and also the Trivium stream cipher.
In [49, 50], (1+1)-EA and genetic algorithms were used to minimize the objective
function from [55] in application to different weakened variants of Trivium.

The best runtime estimation for SAT-based cryptanalysis of Trivium, proposed in
the present study (7.15e+40 seconds) is slightly better than the previous best such esti-
mation, described in [55] (2.04e+41 seconds). As for Grain v1, Mickey and Rabbit,
their SAT-based cryptanalysis have not been studied before by a Divide-and-Conquer
SAT approach.

8. Conclusion

In the present paper, an improvement on the pseudo-Boolean black-box optimization
for SAT solving was made. In particular, we proposed a new objective function for
estimating the runtime in the context of Divide-and-Conquer SAT solving, which is
more accurate compared to predecessors. Several black-box optimization algorithms of
different types were implemented and applied to study the proposed function on four
hard optimization problem. Each of the latter is related to a problem of SAT-based
cryptanalysis of a relevant stream cipher. A meticulous computational study showed
that some considered optimization algorithms do not suit to the considered problems
at all, while some of them show surprisingly good results.

We hope that the present paper will become a bridge between the Divide-and-
Conquer SAT community from the one side, and the optimization community from
the other side. The former may get access to a wide spectrum of black-box optimiza-
tion strategies, while the latter can get new classes of interesting hard optimization
problems, which can be used to test and compare new optimization algorithms.

The present paper is a significant extension of the papers [63] and [62] published in
the proceedings of the OPTIMA’2018 and ISC’2017 conferences.
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Appendix A. Best found points for the considered problems

Hereinafter the numeration from 1 for variables is used. For Grain v1, the best value
of the objective function was found by the Tabu search algorithm. The corresponding
set consists of the following 108 variables (out of 160): 2, 3, 5, 6, 7, 9, 10, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 96,
97, 103, 104, 106, 107, 109, 110, 111, 112, 113, 120, 121, 125, 127, 128, 131, 132, 134,
135, 141, 144, 145, 148, 150, 151, 152, 153, 155, 160.

For Mickey, the best value of the objective function was found by the (1+1) evo-
lutionary algorithm. The corresponding set consists of the following 163 variables (out
of 200): 1, 2, 4, 5, 7, 8, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 101, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 151, 152, 153,
156, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 169, 170, 171, 172, 176, 177, 179,
180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
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199, 200.
For Trivium, the best value of the objective function was found by the (1+1)

evolutionary algorithm. The corresponding set consists of the following 142 variables
(out of 288): 3, 6, 8, 9, 11, 12, 15, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 33, 38, 39, 41,
42, 44, 45, 46, 47, 48, 50, 51, 54, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 77, 78, 81, 84,
85, 87, 88, 89, 92, 93, 95, 101, 105, 107, 108, 110, 111, 113, 114, 117, 119, 122, 123,
125, 126, 131, 132, 134, 137, 138, 140, 146, 147, 148, 152, 153, 157, 160, 164, 165, 167,
168, 171, 173, 174, 175, 177, 182, 183, 186, 189, 192, 195, 198, 200, 201, 203, 206, 207,
210, 212, 213, 215, 216, 218, 219, 221, 222, 225, 227, 228, 230, 233, 238, 239, 240, 242,
246, 249, 251, 252, 254, 256, 257, 258, 260, 261, 262, 265, 266, 267, 270, 272, 273, 276,
281, 282, 283, 284, 285, 287, 288.

For Rabbit, the best value of the objective function was found by the simple hill
climbing algorithm. The corresponding set consists of the following 472 variables (out
of 513): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94,
95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 124, 126, 127, 128, 131, 132, 133, 136, 140, 141, 142, 143, 144,
145, 148, 149, 152, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259,
260, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296,
297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314,
315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332,
333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350,
351, 352, 353, 354, 361, 364, 365, 368, 369, 370, 371, 372, 377, 378, 379, 380, 381, 382,
383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 400, 401,
402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420,
421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438,
439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474,
475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494,
495, 496, 497, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513.

Appendix B. Additional figures and tables

In tables B1, B2, B3, and B4, the results of each conducted run for Grain v1,
Mickey, Trivium, and Rabbit are shown. Here “func.” stands for the best found
value of the objective function. These results are also shown in Figure B1.
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Table B1. Objective functions values found by optimization algorithms for Grain v1. The best result for

every algorithm is marked with bold.

Alg.
Run 1 Run 2 Run 3

func. time func. time func. time

SRS 1.46e+32 24 h 1.76e+32 24 h 3.63e+32 24 h
ORS 1.43e+32 24 h 9.88e+31 24 h 2.75e+32 24 h
SHC 1.36e+31 2 h 16 m 2.92e+31 2 h 24 m 7.97e+32 49 m
SAHC 2.58e+31 5 h 10 m 4.43e+31 4 h 12 m 3e+31 4 h 10 m
TS 5.23e+30 24 h 2.96e+30 24 h 7.38e+30 24 h
HCVJ 4.07e+30 24 h 4.77e+30 24 h 5.85e+30 24 h
(1+1) 3.73e+30 24 h 5.56e+30 24 h 7.8e+30 24 h
SMAC 1.78e+34 24 h 1.98e+33 24 h 1.95e+34 24 h

Table B2. Objective functions values found by optimization algorithms for Mickey. The best result for every
algorithm is marked with bold.

Alg.
Run 1 Run 2 Run 3

func. time func. time func. time

SRS 3.58e+54 24 h 3.61e+54 24 h 6.94e+54 24 h
ORS 4.69e+53 24 h 4.29e+53 24 h 1.61e+54 24 h
SHC 4.09e+54 1 h 9 m 1.08e+53 2 h 8 m 8.2e+52 2 h 43 m
SAHC 1.75e+50 17 h 9 m 1.6e+51 19 h 51 m 3.2e+53 10 h 33 m
TS 5.77e+52 24 h 1.15e+51 24 h 2.11e+50 24 h
HCVJ 1.14e+52 24 h 3.81e+53 24 h 8.18e+50 24 h
(1+1) 6.37e+53 24 h 4.77e+51 24 h 2.46e+47 24 h
SMAC 1.36e+54 24 h 1.36e+54 24 h 5.46e+54 24 h

Table B3. Objective functions values found by optimization algorithms for Trivium. The best result for

every algorithm is marked with bold.

Alg.
Run 1 Run 2 Run 3

func. time func. time func. time

SRS 4.69e+47 24 h 1.7e+47 24 h 7.67e+46 24 h
ORS 2.39e+46 24 h 3.34e+45 24 h 2.29e+46 24 h
SHC 8.59e+41 6 h 18 m 4.91e+44 3 h 38 m 1.79e+48 1 h 40 m
SAHC 1.88e+45 22 h 35 m 5.46e+45 24 h 5.43e+43 24 h
TS 4.46e+43 24 h 1.48e+46 24 h 2.59e+45 24 h
HCVJ 5.04e+41 24 h 2.46e+41 24 h 1.07e+42 24 h
(1+1) 7.15e+40 24 h 9.11e+42 24 h 3.07e+41 24 h
SMAC 2.78e+47 24 h 4.87e+46 24 h 2.12e+46 24 h

Table B4. Objective functions values found by optimization algorithms for Rabbit. The best result for every
algorithm is marked with bold.

Alg.
Run 1 Run 2 Run 3

func. time func. time func. time

SRS 3.44e+150 24 h 6.32e+150 24 h 4.25e+150 24 h
ORS 2.61e+149 24 h 1.38e+149 24 h 1.61e+149 24 h
SHC 1.25e+141 15h 26m 6.01e+147 6h 21m 6.5e+140 18h 32m
SAHC 1.15e+152 24 h 2.64e+149 24 h 1.27e+150 24 h
TS 1.16e+152 24 h 1.08e+152 24 h 1.18e+152 24 h
HCVJ 4.8e+146 24 h 1.52e+142 24 h 1.19e+146 24 h
(1+1) 1.25e+147 24 h 5.36e+147 24 h 5.91e+145 24 h
SMAC - - - - - -
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Figure B1. Results of all runs of the considered optimization algorithms
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