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Abstract. We present ALIAS, a modular tool aimed at finding backdoors for
hard SAT instances. Here by a backdoor for a specific SAT solver and SAT for-
mula we mean a set of its variables, all possible instantiations of which lead to
construction of a family of subformulas with the total solving time less than that
for an original formula. For a particular backdoor, the tool uses the Monte-Carlo
algorithm to estimate the runtime of a solver when partitioning an original prob-
lem via said backdoor. Thus, the problem of finding a backdoor is viewed as a
black-box optimization problem. The tool’s modular structure allows to employ
state-of-the-art SAT solvers and black-box optimization heuristics. In practice,
for a number of hard SAT instances, the tool made it possible to solve them much
faster than using state-of-the-art multithreaded SAT-solvers.

1 Introduction

Informally, a backdoor is some hidden flaw in a design of a system that allows one to
do something within that system that should not be possible otherwise. In application
to Constraint Satisfaction Problems the notion of backdoors first arose in [29], where
strong backdoors were introduced and analyzed. They later were thoroughly studied in
the context of SAT for example in [12,17,26]. A strong backdoor to some SAT instance
(w.r.t. some polynomial algorithm A) in the sense of [29] is such a set of its variables
that after any instantiation of the corresponding variables the resulting subproblem is
solvable via algorithm A. Thus, a SAT instance which has a strong backdoor possesses
a clear complexity structure. It was shown, e.g. in [17], that finding a strong backdoor
for a particular SAT instance is a very hard task.

In the present paper, we move away from strong backdoors towards more general
notions of backdoors. In particular, hereinafter by a Nondeterministic Oracle Backdoor
Set (in terms of [24]) or simply a backdoor to some SAT instance C (w.r.t. to some
SAT solver S) we mean a set of its variables B, such that the runtime of S on C is
greater than the total runtime of S on all possible instances formed by instantiating
variables from B in C. The intuition here is simple: when we know some backdoor,
it makes it possible to solve a considered problem using the available solver faster
than it is possible without such knowledge. The process of solving itself is organized
in a relatively straightforward divide-and-conquer manner. Unsurprisingly, the good
examples that this concept works, come from cryptanalysis applications of SAT: in
particular, in [7,10,23,25] it was shown that by choosing a good backdoor it is possible
to achieve significant progress in solving problems of cryptanalysis of some symmetric
ciphers.
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The natural question arises: how to find backdoors to SAT instances? For a given
SAT instance C, solver S and backdoor B one can effectively compute the estimation
of runtime of S on a family of subproblems produced by assigning values to variables
from B in C. It can be done using a Monte-Carlo method [20], thus defining a black-box
pseudo-Boolean function. Any black-box pseudo-Boolean optimization method can be
used to traverse the search space of possible backdoors to find one with a good esti-
mation. An important disadvantage of this approach is that in order for the search to be
more or less efficient, it is necessary to interrupt the calculation of runtime estimation in
non-promising points of the search space. For this purpose it is necessary to have some
baseline runtime estimation for a considered problem. The latter implies, for example,
the knowledge of a Strong Unit Propagation Backdoor Set (SUPBS) [29] for it.

This paper presents modulAr tooL for fInding bAckdoors for Sat (ALIAS) – a con-
venient customizable scalable tool that can employ arbitrary incremental state-of-the-
art SAT solvers and black-box optimization heuristics to search for backdoors for hard
SAT instances. The found backdoor is then used to solve the corresponding instance by
the same incremental solver. Thereby, ALIAS can be viewed as a tool for constructing
backdoor-based divide-and-conquer parallel SAT solvers.

ALIAS is being developed as a replacement of the divide-and-conquer parallel SAT
solver PDSAT used extensively to obtain cryptographic results published in [21,23,24].
The main motivation here is that PDSAT is a complex C++ program – it’s hard to
incorporate new solvers or new black-box optimization heuristics into it. Also, PDSAT
was oriented on cryptographic problems, while ALIAS is designed with larger scope
in mind. Compared to predecessor, ALIAS is able to find good backdoors much faster
with significantly fewer resources. The ALIAS tool and our benchmarks are available
at https://github.com/Nauchnik/alias.

2 The ALIAS tool

Essentially, in the core of ALIAS lies the ability to compute runtime estimation for an
arbitrary backdoor. It is done by the ALIAS ESTIMATION.PY script using the provided
GENIPAINTERVAL application that is implemented based on an IPASIR-compatible
solver and an auxiliary SAMPLER application. The purpose of SAMPLER is to orga-
nize the subproblems from the random sample into meaningful chunks and to filter
out impossible assumptions. The reason for considering only incremental SAT solvers
is because typically the subproblems to be solved are different only in values of sev-
eral backdoor variables. The GENIPAINTERVAL program, given a CNF formula and a
set of assumptions processes the latter in incremental way. To build it one needs the
IPASIR API [4] and sources of some generic IPASIR-compatible incremental SAT
solver. The searching for a good backdoor is currently implemented in the form of
a LOCAL SEARCH module – a program that realizes a relatively simple greedy local
search algorithm. However, it can be substituted by other optimization algorithms with
relative ease. The backdoor found by the LOCAL SEARCH module is then used by the
solving module to solve the given instance.

https://github.com/Nauchnik/alias
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Note, that since the amount of computations required to traverse the search space
of possible backdoors is quite significant, ALIAS is able to employ as many processor
cores as possible. Let us now briefly describe the main modules in more detail.

2.1 Sampler module

Let us give a few comments on the possible structure of a random sample. From the
Monte Carlo method point of view, it would be fine if for a backdoor B of size |B| = k
we just took N randomly generated vectors from {0, 1}k and constructed a random
sample by assigning corresponding values to variables from B. This approach was
used in [10,23,25]. Thus, strictly speaking, a separate SAMPLER module is not oblig-
atory. However, the described straightforward sampling procedure might not benefit
fully from the incremental solving ability of state-of-the-art SAT solvers because the
assignments of variables will be too distant from each other (for example Hamming
distance-wise). Thus, by default we employ the sampling strategy proposed in [30],
where the sample consists of a number of diapasons, each containing a continuous
set of assumptions. In our experiments, this strategy shows better consistency between
estimated runtime and solving time. Note that, compared to [30], the performance of
sampling procedure was greatly improved in order to minimize overhead required to
compute the runtime estimation for a given backdoor.

The SAMPLER module is implemented on the basis of MINISAT 2.2 [9]. Essentially,
it uses the basic scheme of DPLL [8] to traverse a specified diapason of assignments of
variables of a given backdoor. The result of this processing is a list of valid assumptions.
Here by valid assumption we mean the assumption that requires further decisions in
order to decide the corresponding problem. The application loads specification from a
.JSON file and outputs the assumptions in a file with DIMACS-like format.

2.2 Runtime estimation and solving modules

The runtime estimation module is implemented as a script for PYTHON 3.6+. It takes as
an input the backdoor, the considered CNF formula (.CNF file), the GENIPAINTERVAL
binary and various settings that specify how large the random sample should be, what
structure should it have, the current best known runtime estimation, etc.

The script implements the basic idea of the Monte-Carlo method: the average solv-
ing time of a subproblem produced by instantiating backdoor variables is treated as
a random variable. Then, it is possible to estimate its expected value by averaging the
solving time over a random sample of such subproblems. The script outputs the runtime
estimation in seconds for one processor core (with typical settings).

The solving module is a very close relative of runtime estimation module. It orga-
nizes the solving of a specified SAT instance using the provided backdoor and GENI-
PAINTERVAL by splitting the instance into subproblems, organizing them into sizable
chunks and controlling the computations. The result is either the first found satisfying
assignment (for satisfiable CNFs) or the UNSATISFIABLE verdict. It can also explicitly
track the progress .

Generally speaking, the ALIAS ESTIMATE script implements a blackbox function
which computes the runtime estimation expressed as a DOUBLE value. Thus, any tool
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that implements pseudo-Boolean optimization algorithm can be used to search for a
good backdoor. Below we describe our implementation of such tool, that was used in
the experiments.

2.3 Local search module

Note that due to the reasons specified above, on the current stage we can only search
for a backdoor which is a subset of some SUPBS. Of course, the whole set of Boolean
variables in CNF formula can act as one, however, for smaller SUPBSs the search space
is also smaller and thus the search for a good backdoor is more effective.

Assume that a SUPBS for a considered SAT instance contains N variables. Then
the search space has 2N points, each point corresponding to some backdoor. On each
backdoor we can launch ALIAS ESTIMATE.PY as an objective function. For our experi-
ments we implemented LOCAL SEARCH in the form of a simple optimization algorithm
based on the Greedy Best First Search (GBFS) [22]. GBFS starts from a starting point
in the role of which we use the whole SUPBS to obtain a baseline runtime estimation
(since for SUPBS it can always be computed effectively). Then GBFS checks all points
from the neighborhood of the starting point (a set of points at Hamming distance of 1).
If it finds a better point, then it starts checking its neighborhood. If all points from a
neighborhood are worse than the current best known value, then it means that a local
minimum is reached. Since the computation of the objective function in an arbitrary
point is quite costly, all passed points are stored in order to not recompute the value of
objective function in them.

Compared to implementation in PDSAT [23], the GBFS implementation in ALIAS
acquired two major improvements. First, at the beginning of the search the algorithm
tries to quickly traverse the search space by removing large amount of random variables
(10 in our experiments) from the current record point at each step as long as it leads to
updating the record. In our experiments this allowed to quickly move from backdoors
with hundreds of variables to ones with dozens. The second improvement is that when
a local minimum is reached, the algorithm tries to jump from it by constructing a new
starting point by permuting the current record point. The algorithm stops either if the
time limit is exceeded, if the limit of jumps is reached or if the current runtime estima-
tion is lower than the (scaled) elapsed time.

On the current stage the ALIAS components are configured in a way to support
optimization tools, which were used in Configurable SAT Solver Competition (CSSC)
2013 and 2014 [16], such as ParamILS [15], SMAC [14], and GGA [1]. Similar to our
implementation, all these tools make use of the .pcs file that contains Boolean variables
corresponding to the starting point (SUPBS).

3 Experimental results

In all experiments described below we employed one node of the HPC-cluster “Aca-
demician V.M. Matrosov” 1 (2 × 18-core Intel Xeon E5-2695 CPUs and 128 Gb of
RAM). Each considered solver was launched on 1 node with 36 threads.

1 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
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We benchmarked ALIAS against the Top 3 solvers from the SAT Competition 2017
Parallel track: SYRUP [3], PLINGELING [5] and PAINLESS-MAPLECOMSPS [11]. All
these solvers are portfolio. PAINLESS-MAPLECOMSPS uses MAPLECOMSPS [18] as
a core sequential solver.

As IPASIR-based solvers for ALIAS we used the Top 3 solvers from the SAT
Competition 2017 Incremental track: ABCDSAT [6], GLUCOSE [2] and RISS [19]. As
a result, we constructed 3 versions of ALIAS: ALIAS-ABCDSAT, ALIAS-GLUCOSE
and ALIAS-RISS. Each of these programs can be viewed as a parallel SAT solver.

To search for good backdoors we tried to use two programs: SMAC [14] and our im-
plementation of GBFS described in Subsection 2.3. In preliminary experiments GBFS
found backdoors with better runtime estimation for all considered instances. Hence, in
the main experiments described further GBFS was used. On each instance first GBFS
is launched. When it stops due to any stop criterion (see 2.3), the best current backdoor
is then used to solve the instance. In practice, the estimation stage took from 8 minutes
up to 15 hours on the considered instances.

Two benchmark sets of hard SAT instances were considered. The first set consists
of instances, in which a relatively small SUPBS is known. In particular, we considered
SAT encodings of cryptanalysis of the alternating step generator (ASG) [13] and two its
modifications, MASG and MASG0 [28]. SAT instances for these problems were taken
from [30]: 10 for each of ASG-72, ASG-96, MASG-72 and MASG0-72 (40 in total).
Naturally, for ASG-72, MASG-72 and MASG0-72 there is a SUPBS of 72 variables
and for ASG-96 one of 96 variables (corresponding to secret key). Thus, ALIAS-based
solutions were provided with this information. Note, that each instance from this set has
exactly one satisfying assignment.

The second benchmark set contains hard small crafted SAT instances. To construct
it we first took all crafted instances with less than 500 variables from SAT Competitions
2007, 2009, 2011, 2014, 2016, 2017 and also challenge-105.cnf described in [27]. Then
we launched SYRUP, PLINGELING and PAINLESS-MAPLECOMSPS on each of them
with the time limit of 5000 seconds. It turned out that 33 instances were not solved in
time by any solver: 7 from SAT Competition 2007, 10 from SAT Competition 2009,
9 from SAT Competition 2011, 6 from SAT Competition 2014 and also challenge-
105.cnf. Thus, these 33 instances form the second benchmark set.

We then launched all 6 considered solvers (multithreaded solvers SYRUP, PLIN-
GELING, PAINLESS-MAPLECOMSPS, and ALIAS-based ALIAS-ABCDSAT, ALIAS-
GLUCOSE and ALIAS-RISS) on two described sets (73 instances in total) with the time
limit of 1 day.

It should be noted, that for instances from the second benchmark set the ALIAS-
based solvers were not given any SUPBS – in this role the set of variables of corre-
sponding formulas was used. Also, for these solvers the time of backdoors searching
is included in the total runtime. Hence, on these instances the comparison with solvers
from the SAT Competition 2017 was made in equal conditions.

The obtained results are presented in Fig. 1a and Fig. 1b. Table 1 also lists the
instances from the second benchmark set, which were solved within the time limit by
at least one solver.
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Table 1: Results on small hard crafted benchmarks, time in seconds.
instance source alias-abcdsat alias-glucose alias-riss painless syrup plingeling
mod4block 2vars
9gates u2 autoenc SAT09 - - - 16189 20688 -
sgen1-sat-250-100 SAT09 - - - - 83356 52474
sgen6-1200-5-1 SAT14 7647 6029 10832 6461 - -
sgen6-1320-5-1 SAT14 31304 28674 54616 - - -
sgen6-1440-5-1 SAT14 81527 69715 - - - -
sgen3-n240-
s78945233-sat SAT14 44368 43095 45509 - - 6728
challenge-105 [27] 25756 25613 20400 30183 - -
solved in time 5 5 4 3 2 2
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Fig. 1: Comparison of 3 ALIAS-based solvers with the Top 3 solvers from the SAT
Competition 2017 Parallel track

It is clear that on cryptographic tests (from the first benchmark set) ALIAS-based
solvers greatly outperform the competitors. We also tested ALIAS-based solvers on
these instances without known SUPBS, and as a result bad backdoors were found.
Hence, in this case the knowledge of a small SUPBS is a big advantage. However, for
many instances arising from practice such small SUPBS can naturally be constructed.
ALIAS-based solvers also won on hard small crafted benchmarks, but here the situation
is more complex: there are instances which are solved by ALIAS but not by the com-
petitors and vice versa. It turned out, that sgen3-n240-s78945233-sat and sgen1-sat-
250-100 are satisfiable, while challenge-105.cnf, mod4block 2vars 9gates u2 autoenc,
sgen6-1200-5-1, sgen6-1320-5-1 and sgen6-1440-5-1 are unsatisfiable

4 Conclusions and future work

We believe that the presented ALIAS tool may be useful in the study of hard SAT
instances and sometimes shed the light on some aspects of their inner structure unde-
tectable by state-of-the-art SAT solvers.
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In the nearest future we plan to extend the functionality of ALIAS by being able to
employ arbitrary solver binaries, make the tool compatible with other available black-
box optimization tools and reuse the information obtained during the search for a back-
door when solving the problem.
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17. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability.

In: AAAI 2005. pp. 1368–1373 (2005)
18. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic

for SAT solvers. In: Creignou, N., Berre, D.L. (eds.) Theory and Applications of Satisfiabil-
ity Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9710, pp. 123–140. Springer (2016)

http://arxiv.org/abs/1605.01622


8 S. Kochemazov, O. Zaikin

19. Manthey, N.: Towards next generation sequential and parallel SAT solvers. Constraints 20(4),
504–505 (2015)

20. Metropolis, N., Ulam, S.: The Monte Carlo Method. J. Amer. statistical assoc. 44(247), 335–
341 (1949)

21. Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryp-
tographic functions to SAT using TRANSALG system. In: ECAI 2016. FAIA, vol. 285, pp.
1594–1595 (2016)

22. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 3rd edn. (2009)
23. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of Boolean sat-

isfiability problem with application to inversion of some cryptographic functions. Springer-
Plus 5(1), 1–16 (2016)

24. Semenov, A., Zaikin, O., Otpuschennikov, I., Kochemazov, S., Ignatiev, A.: On crypto-
graphic attacks using backdoors for SAT (in print). In: AAAI 2018 (2018)

25. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
SAT 2009. LNCS, vol. 5584, pp. 244–257 (2009)

26. Szeider, S.: Backdoor sets for DLL subsolvers. Journal of Automated Reasoning 35(1), 73–
88 (2005)

27. Van Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances. In: SAT
2010. LNCS, vol. 6175, pp. 388–397 (2010)

28. Wicik, R., Rachwalik, T.: Modified alternating step generators. IACR Cryptology ePrint
Archive 2013, 728 (2013)

29. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI’03.
pp. 1173–1178 (2003)

30. Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the
alternating step generator. In: ISC 2017. LNCS, vol. 10599, pp. 21–38 (2017)


	ALIAS: A Modular Tool for Finding Backdoors for SAT

