
An Improved SAT-based Guess-and-Determine Attack
on the Alternating Step Generator

Oleg Zaikin and Stepan Kochemazov

Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
zaikin.icc@gmail.com, veinamond@gmail.com

Abstract. In this paper, we propose an algorithm for constructing guess-and-
determine attacks on keystream generators and apply it to the cryptanalysis of the
alternating step generator (ASG) and two its modifications (MASG and MASG0).
In a guess-and-determine attack, we first “guess” some part of an initial state and
then apply some procedure to determine, if the guess was correct and we can
use the guessed information to solve the problem, thus performing an exhaus-
tive search over all possible assignments of bits forming a chosen part of an ini-
tial state. We propose to use in the “determine” part the algorithms for solving
Boolean satisfiability problem (SAT). It allows us to consider sets of bits with
nontrivial structure. For each such set it is possible to estimate the runtime of
a corresponding guess-and-determine attack via the Monte-Carlo method, so we
can search for a set of bits yielding the best attack via a black-box optimiza-
tion algorithm augmented with several SAT-specific features. We constructed and
implemented such attacks on ASG, MASG, and MASG0 to prove that the con-
structed runtime estimations are reliable. We show, that the constructed attacks
are better than the trivial ones, which imply exhaustive search over all possible
states of the control register, and present the results of experiments on cryptanal-
ysis of ASG and MASG/MASG0 with total registers length of 72 and 96, which
have not been previously published in the literature.

Keywords: keystream generator, alternating step generator, cryptanalysis, guess-
and-determine attack, SAT, Monte Carlo

1 Introduction

The alternating step generator (ASG) was proposed in [16]. It consists of two stop/go
clocked binary Linear Feedback Shift Registers (LFSRs), LFSRX and LFSRY, and
a regularly clocked binary LFSR, LFSRC. The clock-control bit defines which of the
two stop/go LFSRs is clocked, and the keystream bit is obtained as the bitwise sum of
stop/go LFSRs’ output bits. There exist many attacks on ASG. The majority of them
(e.g., [14, 15, 19, 20]) follow the divide-and-conquer approach, where a correlation at-
tack is performed on stop/go LFSRs.

There is a number of ASG modifications. In [32] two of its modifications (MASG
and MASG0) were proposed. They are based on replacing stop/go LFSRs by Nonlin-
ear Feedback Shift Registers (NLFSRs). Because of the nonlinearity of the controlled
registers, it is unlikely that most attacks on ASG can be easily extended to them.

2 O. Zaikin, S. Kochemazov

In the present paper we develop the guess-and-determine approach to ASG, MASG
and MASG0 cryptanalysis. The most simple variant of a guess-and-determine attack on
ASG looks as follows. First, we “guess” the initial state of the control register (e.g., see
[16, 34]). By guessing we mean assigning values to corresponding bits. After this we
write a system of equations over bits corresponding to states of controlled LFSRs and
“determine” using appropriate methods if the system is consistent and has a solution.
It is clear that to find a correct “guess” we need to perform an exhaustive search over
all possible states of the control register. An interesting question is whether there exist
less trivial sets of bits than that comprising the control register, and if they do, how can
one solve the systems of (in a general case) nonlinear equations produced by assigning
values to the corresponding bits? In the present paper we positively answer the former
question thanks to applying algorithms for solving Boolean satisfiability problem (SAT)
[4] to the latter.

SAT is formulated as follows: for a given propositional formula to either find its
satisfying assignment (the assignment of all its variables that makes formula True), or
to prove that it is unsatisfiable. Because SAT is an NP-hard problem, it means that even
if our simplified system of equations contains nonlinear entries, we can still reduce it to
SAT and solve it in such form. It is important to notice, that while state-of-the-art SAT
solving algorithms (usually referred to as SAT solvers) show remarkable performance
on a huge variety of test samples, it is impossible to know in advance how long will it
take to solve each particular SAT instance. Nevertheless, following a number of papers
[10, 30] we show that it is possible to construct a runtime estimation of cryptanalysis of
a keystream generator for each chosen set of bits to guess, SAT solver and keystream
fragment size. This runtime estimation is constructed computationally via the Monte
Carlo method [12] and can not be expressed by formula.

Thus, we can construct a guess-and-determine attack for an arbitrary subset of a
set of bits, corresponding to an initial state of a keystream generator and estimate its
runtime. It means, that using black-box optimization algorithms we can in fact organize
an automatic procedure for finding good subsets of bits that yield better attacks. It was
done before in application to several generators [10, 28–30], but the previous papers
did not take into account a number of important SAT-related issues, thus the approach
presented in our paper simply works better in one or the other aspect.

Let us present a brief outline of the paper. In Section 2 we briefly describe ASG
and its modifications studied in the paper, and focus on particular configurations of
ASG, MASG and MASG0 (as well as their SAT encodings). In Section 3 we suggest
a new Monte-Carlo based algorithm, which for a given generator allows to construct
a SAT-based guess-and-determine attack with a good runtime estimation and discuss
why the runtime estimations constructed can be believed to be reliable. In Section 4 we
construct such attacks on ASG (with 72-bit, 96-bit, and 192-bit initial states), MASG
and MASG0 (both of them with 72-bit initial states). For each considered generator
configuration (except the 192-bit ASG version) we prove that our runtime estimations
are correct by solving 20 cryptanalysis instances. We also show that the constructed
SAT-based guess-and-determine attacks are better than the trivial SAT-based guess-and-
determine attacks in all cases. In the rest of the paper we observe the related work and
draw conclusions.

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 3

2 Considered Cryptanalysis Problems

As it was outlined above, unlike most cryptanalytic attacks our approach does not make
it possible to construct a general formula that would express its complexity. Rather, we
can construct runtime estimation for each particular cryptanalysis problem. As such,
hereinafter we consider cryptanalysis problems for three configurations of ASG – with
total length of registers equal to 72, 96 and 192 (further we will refer to them as ASG-
72, ASG-96 and ASG-192). Below we show the primitive polynomials used in each
version.

ASG-72:

– LFSRC (23 bits): X23 ⊕X22 ⊕X20 ⊕X18 ⊕ 1;
– LFSRX (24 bits): X24 ⊕X23 ⊕X22 ⊕X17 ⊕ 1;
– LFSRY (25 bits): X25 ⊕X24 ⊕X23 ⊕X22 ⊕ 1.

ASG-96:

– LFSRC (31 bits): X31 ⊕X7 ⊕ 1;
– LFSRX (32 bits): X32 ⊕X7 ⊕X5 ⊕X3 ⊕X2 ⊕X ⊕ 1;
– LFSRY (33 bits): X33 ⊕X16 ⊕X4 ⊕X ⊕ 1.

ASG-192:

– LFSRC (61 bits): X61 ⊕X60 ⊕X46 ⊕X45 ⊕ 1;
– LFSRX (64 bits): X64 ⊕X63 ⊕X61 ⊕X60 ⊕ 1;
– LFSRY (67 bits): X67 ⊕X66 ⊕X58 ⊕X57 ⊕ 1.

We also consider cryptanalysis problems for MASG and MASG0, which were pro-
posed in [32]. In these modifications LFSRX and LFSRY are replaced by NLFSRs, to
which we refer below as NLFSRX and NLFSRY. In MASG a keystream bit is pro-
duced similarly to the original ASG: as a bitwise sum of output bits of NLFSRX and
NLFSRY. In MASG0 a keystream bit is produced as a bitwise sum of outputs of all
three registers (LFSRC, NLFSRX and NLFSRY). For both MASG and MASG0 the
following feedback polynomials were used:

– LFSRC (23 bits): X23 ⊕X22 ⊕X20 ⊕X18 ⊕ 1;
– NLFSRX (24 bits): X19 ·X8 ⊕X16 ⊕X10 ⊕X9 ⊕X2 ⊕X;
– NLFSRY (25 bits): X24 ·X22 ·X2 ⊕X17 ⊕X5 ⊕X .

It should be noted, that here we used the same LFSRC, as in ASG-72. The polynomials
for NLFSRs were taken from [7, 25]. So, we consider MASG and MASG0 configura-
tions with total length of registers equal to 72 (further we will refer to them as MASG-72
and MASG0-72).

The transition from an original problem to SAT is usually quite nontrivial (see sur-
vey [27]). There exist several openly available automatic tools that make it possible to
reduce cryptanalysis problems to SAT [11, 18, 26, 31]. These tools produce relatively
similar encodings, thus we applied the Transalg tool [26] to construct the SAT en-
codings for considered configurations of generators. In particular, for each considered
configuration we obtained a Conjunctive Normal Form (CNF). In Table 1 we present
the size, number of clauses, number of variables and keystream fragment size for the
constructed CNFs. In Section 4 we will describe, why exactly these keystream fragment
sizes were used.

4 O. Zaikin, S. Kochemazov

Table 1: Characteristics of CNFs encoding the considered keystream generators.
Generator Size, Mb Variables Clauses Keystream fragment size
ASG-72 0.3 3 426 15 382 76
MASG-72 0.5 3 426 20 454 76
MASG0-72 0.5 3 426 20 758 76
ASG-96 0.7 6 658 32 166 112
ASG-192 1.9 22 705 95 326 200

3 Algorithm for Constructing SAT-based Guess-and-Determine
Attacks

Let C be a CNF encoding a cryptanalysis problem for some keystream generator. As-
sume that Xin is a set of Boolean variables corresponding to an initial state of gen-
erator registers. In the case of ASG-96 (see Section 2), |Xin| = 96 (while there are
6658 Boolean variables in the corresponding CNF in total). We can choose some subset
X∗ ⊂ Xin and consider all possible assignments of variables from X∗. Below let us
refer to X∗ as to set of partitioning variables and to a family of subproblems, formed
by adding information about a particular assignment of variables from X∗ to an original
CNF for a considered problem, as to a partitioning [17].

It is easy to see, that on the one hand any subproblem from a partitioning should
most likely be much easier to solve compared to an original problem (since we “know”
a sizable chunk of information we need), and on the other hand by processing all such
subproblems we will be able to obtain a solution of a considered hard problem. Of
course, there exists some trade-off between the size and contents of X∗ and the diffi-
culty rate of constructed subproblems. It is not always possible to evaluate this trade-
off analytically, so in a number of papers [5, 10, 29, 30] there were studied several ways
how it can be achieved automatically or at least semi-automatically. Basically it all boils
down to the problem of how to choose the best X∗.

It is clear, that any X∗ corresponds to some guess-and-determine attack on a consid-
ered keystream generator. The nontrivial fact consists in the fact that for a given X∗ it is
possible to estimate a runtime of a corresponding attack. Essentially, the estimation can
be done by means of the Monte Carlo method [12]: we choose relatively small random
sample of subproblems from our partitioning, solve them, compute the average time
required to solve one subproblem and scale it to the number of subproblems. However,
in reality, there are many important nuances.

Let us describe the basic Monte-Carlo-based procedure, which is usually used to
obtain the runtime estimation for a set of partitioning variables. The procedure takes as
an input a CNF C, a known keystream fragment F , a set of partitioning variables X∗,
and the number N , representing the size of a random sample. The procedure works as
follows.

1. Construct a random sample S by choosing N binary words from {0, 1}|X∗| accord-
ing to the uniform distribution.

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 5

2. Launch Conflict-Driven Clause Learning (CDCL, [21]) solver on N SAT instances
formed by appending information from F and si ∈ S to C and record the runtime
of the solver on this instance to ti.

3. Compute the runtime estimation by averaging ti over S and multiplying the con-
structed value by the size of a partitioning: R = 2|X

∗| ×
∑N

i=1 si
N .

The described procedure defines an objective function – using some optimization
algorithm one can try to find a set of partitioning variables with minimal value of this
function. For this purpose it is natural to first construct a search space of all possible
sets of partitioning variables (i.e. all possible subsets of a set of Boolean variables cor-
responding to an initial state of a considered keystream generator). Each point in this
search space corresponds to some guess-and-determine attack. For every point we can
calculate a runtime estimation using the objective function defined above. By travers-
ing a search space via some optimization algorithm we can find a set of partitioning
variables with a good runtime estimation. In our experiments in the role of such algo-
rithm we use a simple tabu-based local search algorithm. As its starting point we always
choose a set Xin. The optimization algorithm stops after reaching a given time limit.
The output of this algorithm is a best found attack (compared to that, processed by the
algorithm during its work).

We implemented the procedure described above and applied it to construct guess-
and-determine attacks on several ASG configurations. However, it turned out that it
could only find sets of partitioning variables for which the runtime estimations were
very inaccurate: sometimes the solving time was several times larger (and sometimes
lower) than runtime estimation. Also, in most experiments the found guess-and-determine
attacks were worse than the trivial attack that implies guessing the bits corresponding
to the initial state of the control register.

When we studied, why the described procedure gives very inaccurate estimations
for the considered problems, we found out that it often gives overly optimistic or overly
pessimistic estimations for a given set of partitioning variables because of the way the
random sample is constructed. For cryptographic instances it is a common situation
when for some set of partitioning variables the percentage of very simple subproblems
in a partitioning is very large. By simple problems we mean here the ones that can be
solved effectively – by means of Unit Propagation algorithm [6]. Meanwhile, the rest
of the subproblems (not solved by Unit Propagation) can be exceptionally hard, such
that one hard subproblem is solved many times longer than a whole random sample of
simple subproblems. In other words, if we generate a random sample in the most simple
way possible without additional consideration, it is often the case that a constructed
sample does not adequately represent a partitioning, and even increasing its size has
little to no effect.

Thus, the problem with the outlined scheme lies mainly in the first step of the pro-
cedure — how a random sample is constructed. So we decided to modify the procedure
in such a way that it works well on the considered problems. Basically, on the one hand,
we want the new procedure to construct random samples which contain subproblems
that are not all solved by Unit Propagation. For this purpose we need to introduce some
filtering procedure that determines if a problem can be solved by unit propagation or
not. This procedure can be constructed by stripping a SAT solver down. On the other

6 O. Zaikin, S. Kochemazov

hand, we do not want to just neglect unit propagation stage at all – it can provide a
sizable chunk of runtime.

New procedure takes as an input several parameters: X∗ – the set of partitioning
variables, D – a number of diapasons to be processed, s – a diapason size, K – a
number of problems that have to be constructed within the diapason and not be solved
by unit propagation. It works as follows.

1. Construct D binary words chosen randomly according to the uniform distribution
from {0, 1}|X∗|. These D points serve as diapason starting values.

2. Process each constructed diapason beginning from a starting value. Attempt to con-
struct K problems that are not solved by unit propagation, by sequentially applying
the filtering procedure to each next word taken from a diapason in a lexicographic
order.

3. If K such words were constructed, while not exceeding the diapason size, then the
corresponding K words are returned as a result, along with the number of words P
that did not pass filtering.

4. Solve K corresponding subproblems by a CDCL solver (without any limitations)
in the incremental mode [9] (this mode prevents runtime estimation from being too
pessimistic).

5. Calculate an average runtime for each diapason, taking into account both runtime
on subproblems solved by unit propagation and that on the subproblems solved by
a CDCL solver in the incremental-based loop.

6. Compute the runtime estimation for X∗ by averaging ti over D and multiplying
the constructed value by the size of a partitioning.

The suggested procedure, augmented by the aforementioned black-box optimiza-
tion algorithm, was implemented in the form of a parallel program, which is based
on Message Passing Interface (MPI) [13]. To solve subproblems we employ the ROKK

CDCL-solver, which is a slightly modified version of MiniSat 2.2 [8]. According to
our experience [26], it shows good results in cryptanalysis of keystream generators.

One thread of our program is a control thread, while the others are computing
threads. Each computing thread receives tasks from the control thread, performs the cor-
responding calculations and sends obtained results. This program works in two modes –
the estimating mode and the solving mode. In the estimating mode, in order to calculate
a runtime estimation for a particular X∗, the control thread first randomly generates D
binary words of size |X∗| and forms D computing tasks containing X∗ and one of D
words. Then every computing thread works with one task per process at a time. After
performing the processing of a corresponding diapason according to the procedure out-
lined above, a computed average runtime for a diapason is sent to the control thread,
which then takes all D such values and based on them computes a runtime estimation
for X∗.

In the solving mode, our program takes as an input a set of partitioning variables.
This set can be found in the estimating mode, or it can be constructed manually. For
example, one can use the set of variables, which encode the initial state of a clock
control register of a generator. Given a set of partitioning variables, the program solves
all subproblems from a corresponding partitioning.

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 7

4 Computational Experiments

Using the algorithm, described in Section 3, we constructed guess-and-determine at-
tacks on ASG-72, ASG-96, ASG-192, MASG-72 and MASG0-72. For each of them
(excluding ASG-192) 20 cryptanalysis instances were constructed by randomly gen-
erating 20 initial states values. For each configuration the size of the corresponding
keystream fragment is discussed below.

Hereinafter by total solving time we mean the time required to solve all subproblems
from a partitioning. Of course, for the majority of satisfiable SAT instances we find a
satisfying assignment faster. In particular, each considered SAT instance has exactly
1 satisfying assignment, so on average it usually takes twice less time. However, we
compare our estimations with total solving time for all subproblems, because in fact it
is this runtime that we estimate.

It should be noted, that we applied our program to construct a set of partitioning
variables only for 1 instance out of 20 in every case (in particular, for the first one from
a series). After this the constructed guess-and-determine attack was performed on all
20 instances from a series (including the one, which was used to find a set of partition-
ing variables). Our empirical evaluations and the results of computational experiments
show that the SAT-based guess-and-determine attack for a particular cryptanalysis in-
stance with fixed keystream fragment can be extended to cryptanalysis instances that
have different keystream fragments. This fact allows us to say, that by finding a set of
partitioning variables for a considered generator configuration, we construct a guess-
and-determine attack not only on this particular instance, but on the generator itself.

All calculations were performed on the HPC-cluster “Academician V.M. Matrosov”
[23]. Each computing node of this cluster is equipped with two 18-core CPUs Intel
Xeon E5-2695 (36 CPU cores in total) and 128 gigabytes of RAM. In order to automat-
ically construct guess-and-determine attacks, we used the following values of parame-
ters for the procedure described in Section 3: D = 1000, s = 1000000,K = 1000.

For each generator configuration we compared the automatically constructed guess-
and-determine attack with the trivial one, based on guessing the bits of the control
register. We also compared it with two multithreaded CDCL solvers: plingeling and
treengeling [3]. In the SAT competition 2016 they won the first two prizes in the
parallel category [1]. We chose these standard solvers in order to check, if the high-
ranked CDCL-based parallel SAT solvers can efficiently solve the considered problems
directly, without constructing a guess-and-determine attack. It should be noted, that in
the solving mode we employed exactly 1 computing node of the cluster in all cases,
because the mentioned multithreaded solvers can work only within 1 workstation (i.e.
they can not be launched on a HPC cluster using MPI). In the following subsection
we will present the results of computational experiments for the considered generators
configurations.

4.1 Additional Optimization: Choosing the Right Keystream Fragment Size

In the case of ASG-72, we first considered cryptanalysis problem for the keystream
fragment length of 100 bits (this value is four times greater, than the length of the

8 O. Zaikin, S. Kochemazov

largest employed LFSR). We constructed 1 CNF encoding randomly formed cryptanal-
ysis problem, and on this CNF we launched our parallel program (see Section 3) in the
estimating mode for 2 hours to find a set of partitioning variables (as a subset of a set
of 72 variables corresponding to the initial state). In this case (as well as in all other
launches in estimating mode) our program used 10 computing nodes (360 CPU cores in
total). As a result, for ASG-72 we found the set, consisting of 21 variables with runtime
estimation equal to 32 seconds (if running on the same workstation). This set contains
the following variables: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 (LFSRX); 45
(LFSRX); 69 70 71 (LFSRY). Here we use end-to-end numbering – variables of the
control register LFSRC have numbers from 1 to 23, for the controlled register LFSRX

– from 24 to 47, for the controlled register LFSRY – from 48 to 72. In Table 2 the set
is depicted – here “+” denotes that the corresponding variable belongs to the set.

Table 2: The set of partitioning variables, found for ASG-72.
LFSRC −−−−+++++++++++++++++−−
LFSRX −−−−−−−−−−−−−−−−−−−−−+−−
LFSRY −−−−−−−−−−−−−−−−−−−−−+++−

In [20] it was stated, that the average number of ASG preimages for any keystream
fragment with length m is about 23L−m,m ≤ 3L, where L is the length of the con-
trolled stop/go register. In [20] an ASG with the controlled registers of equal lengths
was considered. In our case (with controlled registers of different lengths) as L we used
a length of the largest controlled register. So, for ASG-72 L = 25, and about 75 bits
of a given keystream fragment should be enough to get only 1 preimage. We decided
to find the length of a keystream fragment, which yields the best runtime estimation
for the considered cryptanalysis problem when the set of partitioning variables is fixed.
We randomly constructed 7 more cryptanalysis instances for ASG-72 – with keystream
fragment lengths from 72 to 96 with the step of 4. We then solved each of them using
the constructed guess-and-determine attack. In order to compare the total solving time
(in seconds), all subproblems from each partitioning were solved. It turned out, that
on 72-bit fragment two preimages were found, on the other variants there was only 1
preimage. The obtained results are presented in Table 3. Along with the total solving
time, for each variant we show the runtime estimation (calculated for the set of 21 vari-
ables, found on the 100-bit variant). We can conclude, that the total solving time agrees
well with the estimation – the difference is about 18 %. As it was mentioned before, in
the estimating mode our program uses 10 computing nodes, while in the solving mode
it uses 1 node. So, further all runtime estimations are given for 1 computing node.

According to the table, the fragments of sizes 72, 76, 80 and 84 bits provide the
best efficiency. We chose the least value, for which only 1 preimage was found. So we
used a fragment of size 76 in all our further experiments for ASG-72 (as well, as for
MASG-72 and MASG0-72).

We did the similar calculations for ASG-96. We first considered the cryptanalysis
problem for the keystream fragment length of size 132 (this value is four times greater

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 9

Table 3: The comparison of ASG-72 total solving time (in seconds) with different sizes
of keystream fragment

Keystream length 72 76 80 84 88 92 96 100
Estimation 31 31 32 31 32 32 32 32
Total solving time 35 35 35 36 37 37 41 38
Preimage number 2 1 1 1 1 1 1 1

than the length of the largest employed LFSR). We constructed 1 CNF encoding ran-
domly formed cryptanalysis problem, and on this CNF we launched our parallel pro-
gram (see Section 3) in the estimating mode for 12 hours to find a set of partitioning
variables (as a subset of a set of 96 variables corresponding to the initial state). As a
result, we found the set, consisting of 30 variables with runtime estimation equal to 29
497 seconds (8 hours and 12 minutes). The found set consists of the following 30 vari-
ables: 2 3 4 5 6 12 13 14 15 17 19 20 22 23 25 26 27 29 30 (LFSRC); 56 57 58 59 60
62 (LFSRX); 89 91 92 93 94 (LFSRY). This set is depicted in Table 4.

Table 4: The set of partitioning variables, found for ASG-96.
LFSRC −+++++−−−−−++++−+−++−++−+++−++−
LFSRX −−−−−−−−−−−−−−−−−−−−−−−−+++++−+−
LFSRY −−−−−−−−−−−−−−−−−−−−−−−−−+−++++−−

We then randomly constructed 8 more cryptanalysis instances for ASG-96 – with
keystream fragment lengths from 100 to 128 with the step of 4. We solved each of 9 SAT
instances using the constructed guess-and-determine attack. As in the case of ASG-72,
all subproblems of each partitioning were solved. As a result for a 100-bit fragment 2
preimages were found, on the other variants there was only 1 preimage. The obtained
results are presented in Table 5. We can conclude, that the total solving time agrees well
with the estimation – the difference is about 7 %.

Table 5: The comparison of ASG-96 total solving time with different keystream frag-
ment lengths

Keystream length 100 104 108 112 116 120 124 128 132
Total solving time 30 905 32 195 30 608 30 292 31 132 32 627 31 311 31 558 31 566
Estimation 31 671 33 137 31 571 30 946 31 931 33 763 32 427 31 971 29 497
Preimage number 2 1 1 1 1 1 1 1 1

According to the table, the fragment length of 112 bits provides the best efficiency.
So we used the fragment of size 112 bits in our further experiments for ASG-96.

10 O. Zaikin, S. Kochemazov

4.2 ASG-72

We used the found set of 21 variables (Table 2) to solve 20 cryptanalysis instances
for ASG-72 (in each instance 76 bits of a keystream were known). The average time
required to solve them turned out to be 16 seconds (we stopped processing of each
partitioning when a correct initial state value was found). We can conclude, that this av-
erage solving time agrees well with the constructed estimation (remind that it is equal to
31 seconds). We also tried to solve all these instances by plingeling, treengeling,
and by our program using the trivial set – formed by 23 variables corresponding to the
initial state of the control register. The results of the comparison are depicted in Fig. 1.
Here GDA is an abbreviation for “guess-and-determine attack”. The runtime was lim-
ited by 5000 seconds for every launch. On the figure we used the so-called cactus plots.
On such plot the values are sorted in the ascending order. From these figures it follows,
that plingeling and treengeling work much worse, than other two variants. It also
follows, that the constructed guess-and-determine attack is better, than the trivial one.

0 5 10 15 20
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e

(s
)

improved-GDA
trivial-GDA
treengeling
plingeling

(a) All considered attacks

0 5 10 15 20
instances

0

20

40

60

80

100

120

140

C
PU

tim
e

(s
)

improved-GDA
trivial-GDA

(b) The trivial and the improved GDA attacks

Fig. 1: Comparison of the considered SAT-based attacks on ASG-72

In Table 6 for each program the number of solved instances and the average time
(in seconds) on solved instances are shown. Our improved guess-and-determine attack
turned out to be about 4.7 times better, than the trivial one. We would like to emphasize,
that in these experiments an estimation is considered as accurate, if it is about 2 times
greater, than the average solving time. As it was said above, on average one needs to
process half of a partitioning to find a solution.

4.3 ASG-96

We used the found set of 30 variables (it was described above) to solve 20 randomly
constructed cryptanalysis instances for ASG-96 (in each instance 112 bits of keystream
were known). The results of the comparison are depicted in Fig. 2. The runtime was
limited by 12 hours (43 200 seconds) for every launch. As a result, plingeling and
treengeling could not solve any instance in time, while both guess-and-determine

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 11

Table 6: The comparison of different SAT-based attacks on ASG-72.
Attack Solved Avg. time on solved Estimation
plingeling 16 1 795 -
treengeling 20 1 997 -
Trivial GDA 20 75 121
Improved GDA 20 16 31

attacks solved all of them. Here in the trivial attack the set of 31 variables, correspond-
ing to the control register, was used. From the figure it follows, that the constructed
guess-and-determine attack is better, than the trivial one.

0 5 10 15 20
instances

0

5000

10000

15000

20000

25000

30000

35000

40000

C
PU

tim
e

(s
)

improved-GDA
trivial-GDA

Fig. 2: Comparison of the trivial and the improved guess-and-determine attacks on
ASG-96

In Table 7 for each SAT-based attack the number of solved instances and the average
time (in seconds) on solved instances are shown. Our improved guess-and-determine
attack turned out to be about 38 % better, than the trivial one.

Table 7: The comparison of different SAT-based attacks on ASG-96.
Attack Solved Avg. time on solved Estimation
plingeling 0 - -
treengeling 0 - -
Trivial GDA 20 18 211 40 357
Improved GDA 20 13 181 30 946

12 O. Zaikin, S. Kochemazov

4.4 MASG-72 and MASG0-72

In the cases of MASG-72 and MASG0-72 the keystream length of 76 was used (similar
to ASG-72). For both generators our program was launched in the estimating mode for
2 hours on the cluster.

As a result for MASG-72 we found the set of partitioning variables consisting of 22
variables with runtime estimation equal to 71 seconds. The set consists of the following
variables: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 (LFSRC); 40 41 42 45 (LFSRX);
64 67 68 (LFSRY). This set is also presented in Table 8.

Table 8: The set of partitioning variables, found for MASG-72.
LFSRC −−−−−−+++++++++++++++−−
LFSRX −−−−−−−−−−−−−−−−+++−−+−−
LFSRY −−−−−−−−−−−−−−−−+−−++−−−−

We used this set to solve 20 randomly generated cryptanalysis instances for MASG-
72. We also launched plingeling, treengeling and trivial guess-and-determine at-
tack on them. In Table 9 for each SAT-based attack the number of solved instances and
the average time (in seconds) on solved instances are shown. Our improved guess-and-
determine attack turned out to be about 29 % better, than the trivial one. The results of
experiments are also presented in Fig. 3.

Table 9: The comparison of different SAT-based attacks on MASG-72.
Attack Solved Avg. time on solved Estimation
plingeling 10 1 935 -
treengeling 14 2 418 -
Trivial GDA 20 58 89
Improved GDA 20 45 71

For MASG0-72 in the same conditions we found the set of 22 variables with runtime
estimation of 74 seconds. The set consists of the following variables: 3 7 8 9 10 11 12
13 14 15 16 17 18 20 21 22 (LFSRC); 41 42 46 (LFSRX); 65 67 68 (LFSRY). This
set is also presented in Table 10.

Table 10: The set of partitioning variables, found for MASG0-72.
LFSRC −−+−−−++++++++++++−+++
LFSRX −−−−−−−−−−−−−−−−−++−−−+−
LFSRY −−−−−−−−−−−−−−−−−+−++−−−−

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 13

0 5 10 15 20
instances

0

1000

2000

3000

4000

5000

C
P
U

 t
im

e
 (

s)
improved-GDA
trivial-GDA
treengeling
plingeling

(a) All considered attacks

0 5 10 15 20
instances

0

20

40

60

80

100

120

C
PU

tim
e

(s
)

improved-GDA
trivial-GDA

(b) The trivial and the improved GDA attacks

Fig. 3: Comparison of the considered SAT-based attacks on MASG-72

In Table 11 for each SAT-based attack the number of solved instances and the
average time (in seconds) on solved instances are shown. Our improved guess-and-
determine attack turned out to be about 20 % better, than the trivial one. The results of
experiments are also presented in Fig. 4.

Table 11: The comparison of different SAT-based attacks on MASG-72.
Attack Solved Avg. time on solved Estimation
plingeling 9 1 746 -
treengeling 13 1 667 -
Trivial GDA 20 55 92
Improved GDA 20 46 74

4.5 ASG-192

We launched our program for 24 hours in order to construct a guess-and-determine
attack on ASG-192. As a result we found the set of 63 variables with the runtime esti-
mation of 7.55e+13 seconds. This set is presented in Table 12. The set consists of the
following variables: 6 7 8 9 11 13 14 15 16 17 18 19 20 21 22 25 29 30 31 33 34 37 38
39 40 42 43 44 45 46 47 48 50 51 52 55 57 60 (LFSRC); 94 97 100 101 105 106 113
114 115 116 117 118 119 121 124 (LFSRX); 160 161 162 166 167 168 172 174 175
186 (LFSRY).

We also used our program to estimate the trivial set (61 variables, corresponding to
the control register). The corresponding estimation turned out to be 3.60e+14 seconds,
i.e. our attack is about 4.77 times better (by estimation). According to the obtained
estimations, we decided not to perform the constructed improved attack in practice.
This example shows, that using our approach for a given guess-and-determine attack,
one can determine, if this attack can be performed in reasonable time in practice.

14 O. Zaikin, S. Kochemazov

0 5 10 15 20
instances

0

1000

2000

3000

4000

5000

C
P
U

 t
im

e
 (

s)
improved-GDA
trivial-GDA
treengeling
plingeling

(a) All considered attacks

0 5 10 15 20
instances

0

20

40

60

80

100

120

C
PU

tim
e

(s
)

improved-GDA
trivial-GDA

(b) The trivial and the improved GDA attacks

Fig. 4: Comparison of the considered SAT-based attacks on MASG0-72

Table 12: The set of partitioning variables, found for ASG-192.
LFSRC −−−−−++++−+−++++++++++−−+−−−+++−++

−−++++−+++++++−+++−−+−+−−+−
LFSRX −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−

−+−−++−−−++−−−−−−+++++++−+−−+−
LFSRY −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+++−−−+++−−−+−++−−−−−−−−−−+−−−−−−

5 Related work

The cryptographic resistance of the alternating step generator was analyzed in a number
of papers [14–16, 20, 34]. The majority of these attacks implement different variants
of correlation attacks on one or both controlled LFSRs [14, 15, 20]. A good overview
of these attacks can be found in [20]. Hereinafter, assume that l is the length of the
control LFSR, and m and n are the lengths of two controlled stop/go LFSRs. The attack
with lowest time complexity was proposed in [19]: O(m2 × 22m/3), but it requires a
lot of keystream (O(22m/3)) and has a number of specific requirements regarding the
keystream fragment. The same can be said about the attack from [20].

Since our attack does not have such requirements and uses a fragment of keystream
of relatively small size, we compare it with the best attacks with similar properties.
From this point of view the best attack among previously published results is the divide-
and-conquer attack from [16], because in all configurations considered in our paper the
control register is the smallest.

The attack from [16] has the time complexity of O(min(m,n)×2l), however, since
we can not express the complexity of our attack analytically, it is necessary to get into
details. In the attack from [16] we perform an exhaustive search over all possible vari-
ants of the initial value of control register (it corresponds to 2l component in O(·)).
Intuitively, after guessing the value we derive a system of linear equations over bits
corresponding to initial values of controlled registers and apply to it the so-called Lin-
ear Consistency Test (LCT) [33]. Essentially, LCT consists in solving the constructed

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 15

system by means of Gaussian elimination or more state-of-the-art algorithm [2] and si-
multaneously checking if it is consistent. If the system yields a solution then with over-
whelming probability it is the solution of our cryptanalysis problem. Now, for ASG-72
(for which l = 23, m = 24 and n = 25) the average runtime of our attack is 16
seconds on 36 cores, so about 576 seconds on one core of Intel Xeon E5 2695v4. It
means, that in order for attack from [16] to be equally fast as our attack, it would need
to be able to process about 223/576 = 14563.5 states of control register per second on
the same processor core. For ASG-96 the corresponding number of states per second is
231/(13181×36) = 4525. It is very hard to say what will be the performance of this at-
tack if implemented properly without actually implementing it. We could not find ready
implementations and implementing attack ourselves is out of the scope of the present
research. Our guess is that if programmed properly it would be in the general vicinity
of our approach. The important consideration here is that we present the results of a
practical attack – it involves a lot of auxiliary work, such as actual decomposition of the
problem into partitioning, sending commands to computing processes, processing the
results, etc. Meanwhile the attack in [16] has only general outline.

We are not aware of any SAT-based and/or guess-and-determine attacks on ASG.
Meanwhile, the corresponding approach works quite well in other areas of cryptanal-
ysis. The overview of possible applications of SAT in algebraic cryptanalysis can be
found in [2]. In [22] a SAT-based attack on a reduced variant of DES was proposed.
In [24] there were studied several applications of SAT solvers to finding collisions of
cryptographic hash functions.

In [10, 29, 30] using a relatively similar way to our approach, the Monte Carlo al-
gorithms were applied to construct SAT-based guess-and-determine attacks on several
keystream generators. However, we suggest a Monte Carlo-based algorithm with the
new significantly improved functionality that takes into account several previously ig-
nored issues, that greatly improve its accuracy.

Another relatively similar approach to cryptanalysis of ASG and other generators
was proposed in [34]. In that paper it was suggested to use a straightforward back-
tracking algorithm to determine if a system of equations, specifying the cryptanalysis
instance, can be solved. In a way, our work can be considered as a development in this
direction, however we replace simple backtracking algorithm by the accumulated expe-
rience and methods from the area of SAT solving in the form of state-of-the-art CDCL
algorithms.

As for MASG/MASG0, we have not found any papers considering the cryptanalysis
of these generator modifications. Since we replace controlled LFSRs by NLFSRs, it
means that the vast majority of correlation attacks or their variants, that work well for
ASG, can not be applied to MASG/MASG0. The same can be said about the attack from
[16]. Theoretically, the attack employing backtracking scheme proposed in [34], can be
extended to considered modifications, but evaluating its complexity is a nontrivial task.

Overall, from our point of view, the method for constructing guess-and-determine
attacks presented in our paper is interesting because despite relying on black-box opti-
mization algorithms and algorithms for solving Boolean satisfiability problem (which
is NP-hard) it shows competitive results on cryptanalysis of ASG/MASG/MASG0, and

16 O. Zaikin, S. Kochemazov

makes it possible to extend the paradigm of guess-and-determine attacks by considering
non-trivial sets of bits to guess.

6 Conclusions

In the present paper, we proposed a new algorithm for constructing a SAT-based guess-
and-determine attack on ASG and two its modifications (MASG and MASG0). Using
this algorithm we obtained new guess-and-determine attacks that are better than the triv-
ial ones (where we guess an initial state of the control clock register). The constructed
attacks were used to perform in practice the cryptanalysis of the considered generators
(with the initial states of size up to 96 bits).

Acknowledgments

Authors thank all anonymous reviewers for valuable comments.
The research was funded by Russian Science Foundation (project No. 16-11-10046)
and by Council for Grants of the President of the Russian Federation (stipends no. SP-
1184.2015.5 and SP-1829.2016.5).

References

1. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: Recent developments. In:
Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Ar-
tificial Intelligence, February 4-9, 2017, San Francisco, California, USA. pp. 5061–5063.
AAAI Press (2017)

2. Bard, G.V.: Algebraic Cryptanalysis. Springer Publishing Company, Incorporated, 1st edn.
(2009)

3. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition
2016. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions. Department of Computer Science Series of Publications B,
vol. B-2016-1, pp. 44–45. University of Helsinki (2016)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Courtois, N.: Low-complexity key recovery attacks on GOST block cipher. Cryptologia
37(1), 1–10 (Jan 2013)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
mun. ACM 5(7), 394–397 (1962)

7. Dubrova, E.: A list of maximum period NLFSRs. IACR Cryptology ePrint Archive 2012,
166 (2012), informal publication

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Lecture Notes in
Computer Science, vol. 2919, pp. 502–518. Springer (2003)

9. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4), 543–560 (2003)

Improved SAT-based Guess-and-Determine Attack on the Alternating Step Generator 17

10. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium using SAT solvers. In: Bning, H.K., Zhao,
X. (eds.) Proceedings of the 11th International Conference on Theory and Applications of
Satisfiability Testing: 12-15 May 2008; Guangzhou, China. pp. 63–76 (2008)

11. Erkök, L., Matthews, J.: High assurance programming in Cryptol. In: Sheldon, F.T., Peterson,
G., Krings, A.W., Abercrombie, R.K., Mili, A. (eds.) Fifth Cyber Security and Information
Intelligence Research Workshop, CSIIRW ’09, Knoxville, TN, USA, April 13-15, 2009.
p. 60. ACM (2009)

12. Fishman, G.S.: Monte Carlo: Concepts, algorithms, and applications. Springer Series in Op-
erations Research, Springer-Verlag, New York (1996)

13. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1995)

14. Golic, J.D., Menicocci, R.: Edit distance correlation attack on the alternating step genera-
tor. In: Jr., B.S.K. (ed.) Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings.
Lecture Notes in Computer Science, vol. 1294, pp. 499–512. Springer (1997)

15. Golic, J.D., Menicocci, R.: Correlation analysis of the alternating step generator. Des. Codes
Cryptography 31(1), 51–74 (2004)

16. Günther, C.G.: Alternating Step Generators Controlled by De Bruijn Sequences, vol. 304,
pp. 5–14. Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

17. Hyvärinen, A.E.J.: Grid Based Propositional Satisfiability Solving. Ph.D. thesis, Aalto Uni-
versity (2011)

18. Janicic, P.: URSA: a system for uniform reduction to SAT. Logical Methods in Computer
Science 8(3), 1–39 (2012)

19. Johansson, T.: Reduced complexity correlation attacks on two clock-controlled generators.
In: Ohta, K., Pei, D. (eds.) Advances in Cryptology - ASIACRYPT ’98, International Con-
ference on the Theory and Applications of Cryptology and Information Security, Beijing,
China, October 18-22, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1514,
pp. 342–356. Springer (1998)

20. Khazaei, S., Fischer, S., Meier, W.: Reduced complexity attacks on the alternating step gen-
erator. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) Selected Areas in Cryptography, 14th
International Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 4876, pp. 1–16. Springer (2007)

21. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere et al. [4], pp. 131–153

22. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom. Reasoning
24(1/2), 165–203 (2000)

23. Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
24. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In:

Proceedings of the 9th International Conference on Theory and Applications of Satisfiability
Testing. pp. 102–115. SAT’06, Springer-Verlag, Berlin, Heidelberg (2006)

25. Maximum period NLFSRs, https://people.kth.se/ dubrova/nlfsr.html
26. Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryp-

tographic functions to SAT using TRANSALG system. In: ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The Nether-
lands. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1594–1595. IOS
Press (2016)

27. Prestwich, S.D.: CNF encodings. In: Biere et al. [4], pp. 75–97
28. Semenov, A.A., Zaikin, O.S.: Using Monte Carlo method for searching partitionings of hard

variants of Boolean satisfiability problem. In: Malyshkin, V. (ed.) Proceedings of the 13th
International Conference on Parallel Computing Technologies: 31 August - 4 September;
Petrozavodsk, Russia. pp. 222–230 (2015)

18 O. Zaikin, S. Kochemazov

29. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of Boolean sat-
isfiability problem with application to inversion of some cryptographic functions. Springer-
Plus 5(1), 1–16 (2016)

30. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
Kullmann, O. (ed.) Proceedings of the 12th International Conference on Theory and Appli-
cations of Satisfiability Testing: 30 June - 3 July, 2009; Swansea, UK. pp. 244–257 (2009)

31. Soos, M.: Grain of Salt - an automated way to test stream ciphers through SAT solvers. In:
Tools’10: Proceedings of the Workshop on Tools for Cryptanalysis. pp. 131–144 (2010)

32. Wicik, R., Rachwalik, T.: Modified alternating step generators. IACR Cryptology ePrint
Archive 2013, 728 (2013)

33. Zeng, K., Yang, C.H., Rao, T.R.N.: On the Linear Consistency Test (LCT) in Cryptanalysis
with Applications, pp. 164–174. Springer New York, New York, NY (1990)

34. Zenner, E.: On the efficiency of the clock control guessing attack. In: Lee, P.J., Lim, C.H.
(eds.) Information Security and Cryptology - ICISC 2002, 5th International Conference
Seoul, Korea, November 28-29, 2002, Revised Papers. Lecture Notes in Computer Science,
vol. 2587, pp. 200–212. Springer (2002)

