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Abstract

In this paper we propose an approach for constructing partitionings of hard
variants of the Boolean satisfiability problem (SAT). Such partitionings can be
used for solving corresponding SAT instances in parallel. For the same SAT
instance one can construct different partitionings, each of them is a set of
simplified versions of the original SAT instance. The effectiveness of an arbitrary
partitioning is determined by the total time of solving of all SAT instances from
it. We suggest the approach, based on the Monte Carlo method, for estimating
time of processing of an arbitrary partitioning. With each partitioning we
associate a point in the special finite search space. The estimation of
effectiveness of the particular partitioning is the value of predictive function in
the corresponding point of this space. The problem of search for an effective
partitioning can be formulated as a problem of optimization of the predictive
function. We use metaheuristic algorithms (simulated annealing and tabu search)
to move from point to point in the search space. In our computational
experiments we found partitionings for SAT instances encoding problems of
inversion of some cryptographic functions. Several of these SAT instances with
realistic predicted solving time were successfully solved on a computing cluster
and in the volunteer computing project SAT@home. The solving time agrees well
with estimations obtained by the proposed method.

Keywords: Boolean satisfiability problem; SAT; SAT-based cryptanalysis;
partitioning; Monte Carlo method; simulated annealing; tabu search; SAT@home

1 Background

The Boolean satisfiability problem (SAT) consists in the following: for an arbitrary

Boolean formula to decide if it is satisfiable, i.e. if there exists such an assignment

of Boolean variables from the formula that makes this formula true. SAT is usually

considered for a Boolean formula in conjunctive normal form (CNF), because SAT

for any Boolean formula can be effectively reduced to SAT for some CNF. Despite

the fact that SAT is an NP-hard problem, it has wide spectrum of practical appli-

cations because many combinatorial problems from different areas can be reduced

to it [1]. The effectiveness of the SAT solving algorithms in the recent years dramat-

ically increased. At the present moment these algorithms are often used in formal

verification, combinatorics, cryptanalysis, bioinformatics and other areas.
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In this paper we consider the applicability of the SAT approach to problems of

inversion of some cryptographic functions. The corresponding SAT instances are

hard and the success in their solving has at least two positive consequences. First,

the SAT solving algorithms, that successfully cope with cryptanalysis instances, are

powerful computing methods and can be applied to solving combinatorial problems

from various classes. Second, they can be used to justify the resistance of crypto-

graphic systems or to find their vulnerabilities. Unfortunately, today there is no

unified term to represent the cryptanalysis via SAT approach. In the corresponding

papers such phrases as “logical cryptanalysis”, “SAT-aided cryptanalysis”, “crypt-

analysis via SAT solvers”, etc. are used for this purpose. Hereinafter we will refer

to it as SAT-based cryptanalysis.

The development of parallel SAT solving algorithms is very relevant. There are

two approaches to constructing such algorithms: the portfolio approach and the

partitioning approach. According to the portfolio approach one SAT instance is

solved using different SAT solvers. During their work, SAT solvers share information

(usually in the form of conflict clauses). According to the partitioning approach

the original SAT instance is decomposed into a family of independent instances.

For solving instances from the obtained family it is natural to use a parallel or a

distributed computing system. Note that for a particular SAT instance there can

be constructed a lot of different partitionings. In this case there arises a question:

how to evaluate a partitioning and compare it to others? From the practical point

of view it can be reformulated as follows: how to find relatively good partitioning

in a reasonable time? In this paper we answer these questions.

Below we present the brief outline of this paper. First, we consider the problem

of estimating the effectiveness of a SAT partitioning as a problem of estimating

the expected value of a special random variable. To solve the latter problem we

apply the Monte Carlo method in its classical formulation [2]. Then the problem of

finding a SAT partitioning with a realistic estimated time, required to process it, is

reduced to the optimization problem for the predictive function in a special finite

search space. We use two metaheuristic algorithms to solve this problem: simulated

annealing and tabu search.

The proposed methods for constructing SAT partitionings were tested in appli-

cation to cryptanalysis of two well known stream ciphers: A5/1 and Bivium. The

search for SAT partitionings was performed using a computing cluster. The corre-

sponding cryptanalysis instances were solved using the found partitionings on the

computing cluster and also in the volunteer computing project SAT@home, that

was developed by us specifically for the purpose of solving hard SAT instances via

partitioning approach.

We would like to emphasize that this paper is a significant extension of the paper

[3], which appeared in the proceedings of 13th international conference on parallel

computing technologies (PaCT’2015).
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2 Monte Carlo Approach to Statistical Estimation of

Effectiveness of SAT Partitioning
Let us consider the SAT for an arbitrary CNF C. The partitioning of C is a set of

formulas

C ∧Gj , j ∈ {1, . . . , s}

such that for any i, j : i 6= j formula C ∧Gi ∧Gj is unsatisfiable and

C ≡ C ∧G1 ∨ . . . ∨ C ∧Gs.

(hereinafter by “≡” we denote logical equivalence). Obviously when one has a par-

titioning of the original SAT instance, SAT for formulas C ∧Gj , j ∈ {1, . . . , s} can

be solved independently in parallel.

There exist various partitioning techniques. For example one can construct

{Gj}sj=1 using a scattering procedure, a guiding path solver, lookahead solver and

a number of other techniques described in [4]. Unfortunately, for these partitioning

methods it is hard in general case to estimate the time required to solve an original

problem. From the other hand in a number of papers about SAT-based cryptanal-

ysis of several keystream ciphers there was used a partitioning method that makes

it possible to construct such estimations in quite a natural way. In particular, in

[5, 6, 7, 8] for this purpose the information about the time to solve small number

of subproblems randomly chosen from the partitioning of an original problem was

used. In our paper we give strict formal description of this idea within the borders

of the Monte Carlo method in its classical form [2]. Also we focus our attention on

some important details of the method that were not considered in previous works.

Consider SAT for an arbitrary CNF C over a set of Boolean variables X =

{x1, . . . , xn}. To an arbitrary set X̃ = {xi1 , . . . , xid}, X̃ ⊆ X we refer as a de-

composition set. Consider a partitioning of C that consists of a set of 2d formulas

C ∧Gj , j ∈ {1, . . . , 2d}

where Gj , j ∈ {1, . . . , 2d} are all possible minterms over X̃. Note that an arbi-

trary formula Gj takes a value of true on a single truth assignment
(

αj
1, . . . , α

j
d

)

∈
{0, 1}d. Therefore, an arbitrary formula C ∧ Gj is satisfiable if and only if

C
[

X̃/
(

αj
1, . . . , α

j
d

)]

is satisfiable. Here C
[

X̃/
(

αj
1, . . . , α

j
d

)]

is produced by setting

values of variables xik to corresponding αj
k, k ∈ {1, . . . , d} : xi1 = αj

1, . . . , xid = αj
d.

To a set of CNFs

∆C(X̃) =
{

C
[

X̃/
(

αj
1, . . . , α

j
d

)]}

(αj
1
,...,α

j

d)∈{0,1}d

we will refer as a decomposition family produced by X̃. It is easy to see that the

decomposition family is the partitioning of the SAT instance C.

Let A be some SAT solving algorithm. Hereinafter we presume that A is complete,

i.e. it halts on every input. We also presume that A is a non-randomized determin-

istic algorithm. We denote the total runtime of A on all the SAT instances from

∆C

(

X̃
)

as tC,A

(

X̃
)

. Below we suggest a method for estimating tC,A

(

X̃
)

.
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Define the uniform distribution on the set {0, 1}d. With each randomly chosen

truth assignment (α1, . . . , αd) from {0, 1}d we associate a value ξC,A (α1, . . . , αd)

that is equal to the runtime of A on CNF C
[

X̃/ (α1, . . . , αd)
]

. Let ξ1, . . . , ξQ be all

the different values that ξC,A (α1, . . . , αd) takes on all the possible (α1, . . . , αd) ∈
{0, 1}d. Below we use the following notation

ξC,A

(

X̃
)

=
{

ξ1, . . . , ξQ
}

. (1)

Denote the number of (α1, . . . , αd), such that ξC,A (α1, . . . , αd) = ξj , as ♯ξj . Asso-

ciate with (1) the following set

P
(

ξC,A

(

X̃
))

=

{

♯ξ1

2d
, . . . ,

♯ξQ

2d

}

.

We say that the random variable ξC,A

(

X̃
)

has distribution P
(

ξC,A

(

X̃
))

. Note

that the following equality holds

tC,A

(

X̃
)

=

Q
∑

k=1

(

ξk · ♯ξk
)

= 2d ·
Q
∑

k=1

(

ξk · ♯ξ
k

2d

)

.

Therefore,

tC,A

(

X̃
)

= 2d · E
[

ξC,A

(

X̃
)]

. (2)

To estimate the expected value E
[

ξC,A

(

X̃
)]

we will use the Monte Carlo method

[2]. According to this method, a probabilistic experiment that consists of N inde-

pendent observations of values of an arbitrary random variable ξ is used to approx-

imately calculate E [ξ]. Let ζ1, . . . , ζN be results of the corresponding observations.

They can be considered as a single observation of N independent random variables

with the same distribution as ξ. If E [ξ] and Var (ξ) are both finite then from the

Central Limit Theorem [9] we have the main formula of the Monte Carlo method

Pr







∣

∣

∣

∣

∣

∣

1

N
·

N
∑

j=1

ζj − E [ξ]

∣

∣

∣

∣

∣

∣

<
δγ · σ√

N







= γ. (3)

Here σ =
√

V ar (ξ) stands for a standard deviation, γ – for a confidence level,

γ = Φ(δγ), where Φ (·) is the normal cumulative distribution function. It means

that under the considered assumptions the value

1

N
·

N
∑

j=1

ζj

is a good approximation of E [ξ], when the number of observationsN is large enough.

Due to completeness of A the expected value and variance of random variable

ξC,A(X̃) are finite. Since A is deterministic (i.e. it does not use randomization)
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the observed values will have the same distribution. One can use the preprocessing

stage to estimate the effectiveness of the considered partitioning because N can be

significantly less than 2d.

So the process of estimating the value (2) for a given X̃ is as follows. We randomly

choose N truth assignments of variables from X̃

α1 =
(

α1
1, . . . , α

1
d

)

, . . . , αN =
(

αN
1 , . . . , αN

d

)

. (4)

Below we refer to (4) as random sample. Then consider values

ζj = ξC,A

(

αj
)

, j = 1, . . . , N

and calculate the value

FC,A

(

X̃
)

= 2d ·





1

N
·

N
∑

j=1

ζj



 . (5)

If N is large enough then the value of FC,A

(

X̃
)

can be considered as a good

approximation of (2). That is why one can search for a decomposition set with

minimal value of FC,A (·) instead of finding a decomposition set with minimal value

(2). Below we refer to function FC,A (·) as predictive function.

3 Algorithms for Minimization of Predictive Function

Below we will describe the algorithm for finding good partitionings. This algorithm

is based on the procedure minimizing the predictive function in the special search

space.

Let C be an arbitrary CNF over the set of Boolean variables X = {x1, . . . , xn}.
Let X̃ ⊆ X be an arbitrary decomposition set. We can represent X̃ by binary vector

χ = (χ1, . . . , χn). Here

χi =

{

1, if xi ∈ X̃

0, if xi /∈ X̃
, i ∈ {1, . . . , n}

For an arbitrary χ ∈ {0, 1}n we compute the value of function F (χ) in the following

way. For vector χ we construct the corresponding set X̃ (it is formed by variables

from X that correspond to 1 positions in χ). Then we construct a random sample

α1, . . . , αN , αj ∈ {0, 1}|X̃| (see (4)) and solve SAT for CNFs C
[

X̃/αj
]

. For each

of these SAT instances we measure ζj — the runtime of algorithm A on the input

C
[

X̃/αj
]

. After this we calculate the value of FC,A

(

X̃
)

according to (5). As a

result we have the value of F (χ) in the considered point of the search space.

Now we will solve the problem F (χ) → min over the set {0, 1}n. Of course, the

problem of search for the exact minimum of function F (χ) is extraordinarily com-

plex. Therefore our main goal is to find in affordable time the points in {0, 1}n with

relatively good values of function F (·). Note that the function F (·) is not specified
by some formula and therefore we do not know any of its analytical properties.
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That is why to minimize this function we use metaheuristic algorithms: simulated

annealing and tabu search.

First, we need to introduce the notation. By ℜ we denote the search space, for

example, ℜ = {0, 1}n, however, as we will see later, for the problems considered one

can use the search spaces of much less power. During the minimization of function

F (·) we iteratively move from one point of the search space to another:

χ0 → χ1 → . . . → χi → . . . → χ∗.

By Nρ (χ) we denote the neighborhood of point χ of radius ρ in the search space

ℜ. The point from which the search starts we denote as χstart. We will refer to the

decomposition set specified by this point as X̃start. The current Best Known Value

of F (·) is denoted by Fbest. The point in which the Fbest was achieved we denote as

χbest. By χcenter we denote the point the neighborhood of which is processed at the

current moment. We call the point, in which we computed the value F (·), a checked

point. The neighborhood Nρ (χ) in which all the points are checked is called checked

neighborhood. Otherwise the neighborhood is called unchecked.

According to the scheme of the simulated annealing [10], the transition from χi to

χi+1 is performed in two stages. First we choose a point χ̃i from Nρ

(

χi
)

. The point

χ̃i becomes the point χi+1 with the probability denoted as Pr
{

χ̃i → χi+1|χi
}

. This

probability is defined in the following way:

Pr
{

χ̃i → χi+1|χi
}

=







1, if F
(

χ̃i
)

< F
(

χi
)

exp

(

−F(χ̃i)−F(χi)
Ti

)

, if F
(

χ̃i
)

≥ F
(

χi
)

In the pseudocode of the algorithm demonstrated below, the function that tests if

the point χ̃i becomes χi+1, is called PointAccepted (this function returns the value

of true if the transition occurs and false otherwise). The change of parameter

Ti corresponds to decreasing the “temperature of the environment” [10] (in the

pseudocode by decreaseTemperature() we denote the function which implements

this procedure). Usually it is assumed that Ti = Q · Ti−1, i ≥ 1, where Q ∈ (0, 1).

The process starts at some initial value T0 and continues until the temperature

drops below some threshold value Tinf (in the pseudocode the function that checks

this condition is called temperatureLimitReached()).

Another metaheuristic scheme that we used for minimization of F (·) is the tabu

search algorithm [11]. According to this algorithm we store the points from the

search space, in which we already calculated the values of function F (·), in special

tabu lists. When we try to improve the current Best Known Value of F (·) in the

neighborhood of some point χcenter then for an arbitrary point χ from the neigh-

borhood we first check if we haven’t computed F (χ) earlier. If we haven’t and,

therefore, the point χ is not contained in tabu lists, then we compute F (χ). This

strategy is justified in the case of the minimization of predictive function F (·) be-
cause the computing of values of the function in some points of the search space can

be very expensive. The use of tabu lists makes it possible to significantly increase

the number of points of the search space processed per time unit.
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Algorithm 1: Simulated annealing algorithm for minimization of the predictive

function
Input: CNF C, initial point χstart

Output: Pair 〈χbest, Fbest〉, where Fbest is a prediction for C, χbest is a corresponding
decomposition set

1 〈χcenter , Fbest〉 ← 〈χstart, F (χstart)〉
2 repeat

3 bestValueUpdated ← false
4 ρ = 1
5 repeat // check neighborhood
6 χ← any unchecked point from Nρ(χcenter)
7 compute F (χ)
8 mark χ as checked point in Nρ(χcenter)
9 if PointAccepted(χ) then

10 〈χbest, Fbest〉 ← 〈χ, F (χ)〉
11 χcenter ← χbest

12 bestValueUpdated ← true

13 if (Nρ(χcenter) is checked) and (not bestValueUpdated) then

14 ρ = ρ+ 1

15 decreaseTemperature()

16 until bestValueUpdated
17 until timeExceeded() or temperatureLimitReached()
18 return 〈χbest, Fbest〉

Let us describe the tabu search algorithm for minimization F (·) in more detail.

To store the information about points, in which we already computed the value

of F (·) we use two tabu lists L1 and L2. The L1 list contains only points with

checked neighborhoods. The L2 list contains checked points with unchecked neigh-

borhoods. Below we present the pseudocode of the tabu search algorithm for F (·)
minimization.

Algorithm 2: Tabu search altorithm for minimization of the predictive function
Input: CNF C, initial point χstart

Output: Pair 〈χbest, Fbest〉, where Fbest is a prediction for C, χbest is a corresponding
decomposition set

1 〈χcenter , Fbest〉 ← 〈χstart, F (χstart)〉
2 〈L1, L2〉 ← 〈∅, χstart〉 // initialize tabu lists
3 repeat

4 bestValueUpdated ← false
5 repeat // check neighborhood
6 χ← any unchecked point from Nρ(χcenter)
7 compute F (χ)
8 markPointInTabuLists(χ, L1, L2) // update tabu lists
9 if F (χ) < Fbest then

10 〈χbest, Fbest〉 ← 〈χ, F (χ)〉
11 bestValueUpdated ← true

12 until Nρ(χcenter) is checked
13 if bestValueUpdated then χcenter ← χbest

14

15 else χcenter ← getNewCenter(L2)
16

17 until timeExceeded() or L2 = ∅
18 return 〈χbest, Fbest〉

In this algorithm the function markPointInTabuLists(χ,L1, L2) adds the point

χ to L2 and then marks χ as checked in all neighborhoods of points from L2 that

contain χ. If as a result the neighborhood of some point χ′ becomes checked, the

point χ′ is removed from L2 and is added to L1. If we have processed all the
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points in the neighborhood of χcenter but could not improve the Fbest then as

the new point χcenter we choose some point from L2. It is done via the function

getNewCenter(L2). To choose the new point in this case one can use various heuris-

tics. In our current implementation the tabu search algorithm chooses the point for

which the total conflict activity [12] of Boolean variables, contained in the corre-

sponding decomposition set, is the largest.

As we already mentioned above, taking into account the features of the considered

SAT problems makes it possible to significantly decrease the size of the search space.

For example, knowing the so called Backdoor Sets [13] can help in that matter. Let

us consider the SAT instance that encodes the inversion problem of the function

of the kind f : {0, 1}k → {0, 1}l. Let S(f) be the Boolean circuit implementing f .

Then the set X̃in, formed by the variables encoding the inputs of the Boolean circuit

S(f), is the so called Strong Unit Propagation Backdoor Set [14]. It means that if we

use X̃in as the decomposition set, then the CDCL (Conflict-Driven Clause Learning

[12]) solver will solve SAT for any CNF of the kind C
[

X̃in/α
]

, α ∈ {0, 1}|X̃in| on

the preprocessing stage, i.e. very fast. Therefore the set X̃in can be used as the set

X̃start in the predictive function minimization procedure. Moreover, in this case it is

possible to use the set 2X̃in in the role of the search space ℜ. In all our computational

experiments we followed this path.

4 Computational Experiments

We implemented the algorithms from the previous section in the form of PDSAT

MPI-program [15]. One process of PDSAT is the leader process, all the other are

computing processes (each process corresponds to 1 CPU core).

The leader process selects points of the search space (we use neighborhoods of

radius ρ = 1). For every new point χ = χ
(

X̃
)

it generates a random sample (4) of

size N . Each assignment from (4) combined with the original CNF C defines the

SAT instance from the decomposition family ∆C

(

X̃
)

. These instances are solved

by computing processes. When computing the value of the predictive function we

assume that the decomposition family will be processed by 1 CPU core. We can

extrapolate the estimation obtained to an arbitrary parallel (or distributed) com-

puting system because the processing of ∆C

(

X̃
)

consists in solving independent

subproblems. In the computing processes MiniSat solver [16] is used. This solver

was modified to be able to stop computations upon receiving corresponding mes-

sages from the leader process.

Below we present the estimations produced by PDSAT for SAT-based cryptanal-

ysis of the A5/1 [17], Bivium [18] and Grain [19] keystream generators. We used

the Transalg system [20] to construct SAT instances for these problems.

4.1 Time Estimations for SAT-based Cryptanalysis of A5/1

For the first time the SAT-based cryptanalysis of the A5/1 keystream generator

was considered in [21]. Further we study this problem in the following form: to find

the secret key of length 64 bits based on the given 114-bit keystream fragment.

The PDSAT program was used to find partitionings with good time estimations

for CNFs encoding this problem. The computational experiments were performed

on the computing cluster “Academician V.M. Matrosov” of ISDCT SB RAS [22].
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One computing node of this cluster consists of 2 AMD Opteron 6276 CPUs (32

CPU cores in total). In each experiment PDSAT was launched for 1 day using 2

computing nodes (i.e. 64 CPU cores). We used random samples of size N = 104.

On Figures 1, 2a, 2b three decomposition sets are shown. We described the first

decomposition set (further referred to as S1) in the paper [21]. This set (consisting

of 31 variables) was constructed “manually” based on the analysis of algorithmic

features of the A5/1 generator. The second one (S2), consisting of 31 variables, was

found as a result of the minimization of F (·) by the simulated annealing algorithm

(see Section 3). The third decomposition set (S3), consisting of 32 variables, was

found as a result of minimization of F (·) by the tabu search algorithm. In the

Table 1 the values of F (·) (in seconds) for all three decomposition sets are shown.

Note that each of decomposition sets S2 and S3 was found for one 114 bit fragment

of keystream that was generated according to the A5/1 algorithm for a randomly

chosen 64-bit secret key.

4.2 Solving Cryptanalysis Instances for A5/1 in the Volunteer Computing Project

SAT@home

The values of predictive function presented in Table 1 show that the SAT-based

cryptanalysis of the A5/1 generator requires quite significant computing power.

Specifically for the purpose of solving hard SAT instances we developed the vol-

unteer computing project SAT@home project [23], that is a volunteer computing

project. Volunteer computing [24] is a type of distributed computing which uses

computational resources of PCs of private persons called volunteers. Each volunteer

computing project is designed to solve one or several hard problems. SAT@home

is based on the BOINC platform (Berkeley Open Infrastructure for Network Com-

puting [25]). This project is aimed at solving hard combinatorial problems that can

be effectively reduced to SAT. SAT@home was launched on September 29, 2011 by

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of

Russian Academy of Sciences and Kharkevich Institute for Information Transmis-

sion Problems of Russian Academy of Sciences. On February 7, 2012 SAT@home

was added to the official list of BOINC projects [26].

The experiment aimed at solving 10 cryptanalysis instances for the A5/1

keystream generator was held in SAT@home from December 2011 to May 2012.

We used the rainbow-tables [27] to construct the corresponding instances. When

analyzing 8 bursts of keystream (i.e. 912 bits) these tables allow to find the se-

cret key with probability about 88%. We randomly generated 1000 instances and

applied the rainbow-tables technique to analyze 8 bursts of keystream, generated

by A5/1. Among these 1000 instances the rainbow-tables could not find the secret

key for 125 problems. From these 125 instances we randomly chose 10 and in the

computational experiments applied the SAT approach to the analysis of the first

burst of each corresponding keystream fragment (114 bits). For each SAT instance

we constructed the partitioning generated by the S1 decomposition set (see Figure

1) and processed it in the SAT@home project. All 10 instances constructed this way

were successfully solved in SAT@home (i.e. we managed to find the corresponding

secret keys) in about 5 months (the average performance of the project at that

time was about 2 teraflops). The second experiment on the cryptanalysis of A5/1
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was launched in SAT@home in May 2014. It was done with the purpose of testing

the decomposition set found by tabu search algorithm. In particular we took the

decomposition set S3 (see Figure 2b). On September 26, 2014 we successfully solved

in SAT@home all 10 instances from the considered series.

It should be noted that in all the experiments the time required to solve the prob-

lem agrees with the predictive function value computed for the desomposition sets

S1 and S3. Our computational experiments clearly demonstrate that the proposed

method of automatic search for decomposition sets makes it possible to construct

SAT partitionings with the properties close to that of “reference” partitionings,

i.e. partitionings constructed based on the analysis of algorithmic features of the

considered cryptographic functions.

4.3 Time Estimations for SAT-based Cryptanalysis of Bivium and Grain

The Bivium keystream generator [18] is constructed from two shift registers of a

special kind. The first one contains 93 cells and the second one contains 84 cells.

The Grain keystream generator [19] also uses 2 shift registers: first is 80-bit non-

linear feedback shift register (NFSR), second is 80-bit linear feedback shift register

(LFSR). To mix registers outputs the generator uses a special filter function h(x).

In accordance with [28, 7] we considered cryptanalysis problems for Bivium and

Grain in the following formulation. Based on the known fragment of keystream we

search for the values of all registers cells at the end of the initialization phase. It

means that we need to find 177 bits in case of Bivium and 160 bits in case of Grain.

Usually it is sufficient to consider keystream fragment of length comparable to the

total length of shift registers to uniquely identify the secret key. Here we followed

[5, 7] and set the keystream fragment length for Bivium cryptanalysis to 200 bits

and for Grain cryptanalysis to 160 bits.

In our computational experiments we applied PDSAT to SAT instances that en-

code the cryptanalysis of Bivium and Grain according to the formulations described

above. In these experiments to minimize the predictive functions we used only the

tabu search algorithm, since compared to the simulated annealing it traverses more

points of the search space per time unit. Also we noticed that the decomposition

set for the A5/1 cryptanalysis, constructed by the tabu search algorithm, is closer

to the “reference” set than that constructed with the help of simulated annealing.

During the cryptanalysis of Bivium and Grain in the role of X̃start we used the set

formed by the variables encoding the cells of registers of the generator considered

at the end of the initialization phase. Further we refer to these variables as starting

variables. Thus
∣

∣

∣X̃start

∣

∣

∣ = 177 in case of Bivium, and
∣

∣

∣X̃start

∣

∣

∣ = 160 in case of

Grain. When computing predictive function values PDSAT used random samples

of size N = 105. It was launched for 1 day using 5 computing nodes (160 CPU cores

in total) within the computing cluster “Academician V.M.Matrosov”. So there was 1

leader process and 159 computing processes. Time estimations obtained are Fbest =

3.769× 1010 for Bivium and Fbest = 4.368× 1020 seconds for Grain. Corresponding

decomposition set X̃best for Bivium is marked with gray on Figure 3 (50 variables)

and the decomposition set for Grain is marked with gray on Figure 4 (69 variables).

Interesting fact is that X̃best for Grain contains only variables corresponding to the

LFSR cells.
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In [5, 6, 7] a number of time estimations for SAT-based cryptanalysis of Bivium

were proposed. In particular, in [5] several fixed types of decomposition sets (strate-

gies in the notation of [5]) were analyzed. The best decomposition set from [5]

consists of 45 variables encoding the last 45 cells of the second shift register. Note

that in [5] the corresponding estimation of time equal to 1.637×1013 was calculated

using random samples of size 102. In [6, 7] the estimations of runtime for Crypto-

MiniSat SAT solver, working with SAT instances encoding Bivium cryptanalysis,

were presented. From the description of experiments in these papers it can be seen

that authors used probabilistic experiment to estimate the sets of variables chosen

by CryptoMiniSat during the solving process and extrapolated the estimations

obtained to time points of the solving process that lay in the distant future. Note

that in [6, 7] the problem of estimating the effectiveness of a particular partitioning

is not considered as the problem of estimating the expected value of some random

variable (that is necessary for it to correspond to the Monte Carlo method in its

classical sense). Apparently, as it is described in [6, 7], the random samples of size

102 and 103 were used. In the Table 2 all three estimations mentioned above are

shown. The performance of one CPU core we used in our experiments is comparable

with that of one CPU core used in [6, 7].

4.4 Solving Cryptanalysis Instances for Bivium and Grain

Since the values of predictive functions for Bivium and Grain cryptanalysis turned

out to be quite large, in our computational experiments we studied “weakened”

variants of the corresponding instances. For this purpose we used the sets of the

so called “guessing bits” [29]. The instances obtained were solved on a computing

cluster (with the help of PDSAT) and in the SAT@home project.

In the solving mode of PDSAT for X̃best found during predictive function min-

imization all 2|X̃best| assignments of variables from X̃best are generated. PDSAT

solves all corresponding SAT instances. To compare obtained time estimations with

real solving time we used PDSAT to solve several cryptanalysis problems for Bivium

and Grain with several known guessing bits. Below we use the notation BiviumK

(GrainK ) to denote the cryptanalysis of Bivium (Grain) with known K guessing

bits. In the role of guessing bits in all cases we chose known values ofK starting vari-

ables encoding the last K cells of the second shift register. We solved 3 instances for

each of the following problems: Bivium16, Bivium14, Bivium12, Grain44, Grain42

and Grain40.

In the following experiments for each BiviumK (GrainK) problem we computed

the estimation for the first instance from the corresponding series and used the

obtained decomposition set for all 3 instances from the series. To get more statistical

data we did not stop the solving process after the satisfying assignment was found,

thus processing the whole decomposition family. In the Table 3 for each problem

we show the time required to solve it using 15 computing nodes (480 CPU cores

total) of “Academician V.M. Matrosov”. The estimation of time was computed for

the first instance (inst. 1) in all cases. The estimation for 480 CPU cores is based on

the estimation for 1 CPU core. According to the results from this table, on average

the real solving time deviates from the estimation by about 8%.

We also solved the Bivium9 problem in SAT@home. With the help of PDSAT the

decomposition set formed of 43 variables was found. Using this decomposition set 5



Semenov and Zaikin Page 12 of 16

instances of Bivium9 were solved in SAT@home in about 4 months from September

2014 to December 2014. During this experiment the average performance of the

project was about 4 teraflops.

It should be noted that for all considered BiviumK and GrainK problems the

time required to solve the corresponding instances on the computing cluster and in

SAT@home agrees well with values of the predictive function found by our approach.

5 Related Work

Apparently, the paper [30] was the first work in which it was proposed to use

SAT encodings of inversion problems of cryptographic functions as justified hard

SAT instances. One of the first examples of SAT encodings for a widely known

ciphering algorithm was proposed in [31]: in particular, in that paper the process of

constructing SAT encoding for the DES algorithm was described. To the best of our

knowledge, the first example of successful application of SAT solvers to cryptanalysis

of real-world cryptographic functions was given in [32]. It used the SAT solvers to

construct collisions for the hash functions from the MD family.

The monograph [29] contains systematic research of various questions regarding

algebraic cryptanalysis. A substantial part of this book studies the possibilities of

the use of SAT solvers for solving cryptanalysis equations represented in the form

of algebraic systems over finite fields.

The A5/1 algorithm is still used in many countries to cipher GSM traffic. During

the long lifetime of this algorithm a lot of attacks on it have been created. How-

ever, the first attacks that allowed to find the secret key in manageable time were

presented by the A5/1 Cracking Project Group in 2009 [27]. These attacks were in

fact developed from the Rainbow method [33]. In [34] a number of techniques, used

in the A5/1 Cracking Project to construct Rainbow tables, were presented. The

cryptanalysis of A5/1 via Rainbow tables has the success rate of approximately

88% if one uses 8 bursts of keystream. The success rate of the Rainbow method

if one has only 1 burst of keystream is about 24%. In all our computational ex-

periments we analyzed the keystream fragment of size 114 bits, i.e. one burst, and

considered only instances for which the solution could not be found using the Rain-

bow method. We successfully solved in SAT@home several dozens of such instances.

In [21] we described our first experience on the application of the SAT approach

to A5/1 cryptanalysis in the specially constructed grid system BNB-Grid. In that

paper we found the set S1 (see Section 4.1) manually, based on the peculiarities of

the A5/1 algorithm.

The Bivium generator is a weakened variant of the Trivium generator [18] de-

veloped within the context of the eSTREAM project. The detailed analysis of its

vulnerabilities was performed in [28]. As far as we know, the cryptanalysis esti-

mations from that paper were not verified with the exception of the distinguishing

attack. Later the Bivium generator became quite a popular object of the SAT-based

cryptanalysis. The paper [35] was the first research in that direction. In [5] there

was described the SAT-based attack on Bivium, which used specially constructed

sets of guessing bits. One of the advantages of [5] consists in the fact that their

computational experiments are easy to reproduce. In [6, 7] there was constructed a

time estimation for the SAT-based cryptanalysis of Bivium, that was much better
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than all previous estimations. Essentially, to construct it the Monte Carlo method

was used (in [7] the author even uses the term “Monte Carlo algorithm”). How-

ever that paper does not really contain any references to theoretical basics of the

method: there is no formal definition of the random variable, the expected value of

which is estimated. The main novelty of our approach consists in strict justification

of the applicability of the Monte Carlo method to estimating the effectiveness of

SAT partitionings, and in using metaheuristic algorithms (simulated annealing and

tabu search) for finding partitionings with good estimations of total time required

to process them.

The Monte Carlo method for estimating the expected value of a random variable

was first proposed in [2]. There are a lot of modern guides and handbooks containing

the description and the results of application of this method, for example, [36].

Simulated annealling was first described in [10]. It is used to solve optimization

problems from various areas. Tabu search is another widely used metaheuristic

method originated from [11].

The questions regarding solving SAT in parallel and distributed environments

were considered in a number of papers. In particular, in [4] a systematic review of

methods for constructing SAT partitionings is presented.

The grid systems aimed at solving SAT are relatively rare. In [37] a desktop grid

for solving SAT which used conflict clauses exchange via a peer-to-peer protocol was

described. Apparently, [38] became the first paper about the use of a desktop grid

based on the BOINC platform for solving SAT. Unfortunately, it did not evolve into

a full-fledged volunteer computing project. The predecessor of the SAT@home was

the BNB-Grid system [39, 21], that was used to solve first large scale SAT-based

cryptanalysis problems in 2009.

At the present moment there are several common principles that lie in the basis

of modern SAT solvers. From many years of our experience we believe that in appli-

cation to cryptanalysis instances the best solvers are the ones based on the CDCL

concept [12]. It might seem surprising that CDCL solvers show good results even

when we solve inversion problems for functions with large number of preimages (for

example, when we search for collisions of cryptographic hash functions). Nowadays

there are many CDCL-solvers that have a common basic architecture but differ in

details and heuristics.

6 Conclusion

In the present paper we propose the method for constructing SAT partitionings for

solving hard SAT instances in parallel. This approach is based on the Monte Carlo

method (in its classical form) for estimating expected value of random variable.

From our point of view the proposed method and the corresponding algorithms

can be used in SAT-based cryptanalysis, that is an actively developing direction

in cryptography. We tested our method in application to cryptanalysis of several

keystream generators (A5/1, Bivium, Grain). In the nearest future we are going to

expand the list of metaheuristics used for minimization of predictive functions. Also

we plan to investigate the question of accuracy of the estimations obtained by the

Monte Carlo method for the considered class of problems in more detail.
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Proceedings of the 11th International Conference on Theory and Applications of Satisfiability Testing: 12-15

May 2008; Guangzhou, China, pp. 63–76 (2008)

6. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.)

Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing: 30 June

- 3 July, 2009; Swansea, UK, pp. 244–257 (2009)

7. Soos, M.: Grain of salt - an automated way to test stream ciphers through SAT solvers. In: Proceedings of the

Workshop on Tools for Cryptanalysis: 2010; London, UK, pp. 131–144 (2010)

8. Zaikin, O.S., Semenov, A.A.: Large-block parallelism technology in SAT problems (in Russian). Control

Sciences 1, 43–50 (2008)

9. Feller, W.: An Introduction to Probability Theory and Its Applications, Volume II. John Wiley & Sons Inc., New

York, NY, USA (1971)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680

(1983)

11. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell, MA, USA (1997)

12. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van

Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 131–153. IOS Press, Amsterdam, The Netherlands

(2009)

13. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the 18th

International Joint Conference on Artificial Intelligence: 2003; Acapulco, Mexico, pp. 1173–1178 (2003)

14. Järvisalo, M., Junttila, T.A.: Limitations of restricted branching in clause learning. Constraints 14(3), 325–356

(2009)

15. Parallel and Distributed SAT Solver. Accessed 20 January 2016. https://github.com/Nauchnik/pdsat
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Figure 1: Decomposition set S1 constructed in [21]
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(a) S2: found by simulated annealing
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(b) S3: found by tabu search

Figure 2: Decomposition sets found by PDSAT for cryptanalysis of A5/1
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Figure 3: Decomposition set of 50 variables found by PDSAT for Bivium crypt-
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Table 1: Decomposition sets for SAT-based cryptanalysis of A5/1 and corresponding

values of the predictive function.
Set Power of set F (·)

S1 31 4.45140e+08
S2 31 4.78318e+08
S3 32 4.64428e+08

Table 2: Time estimations for the Bivium cryptanalysis problem
Source N Time estimation

From [5] 102 1.637× 1013

From [6, 7] 103 9.718× 1010

Found by PDSAT 105 3.769× 1010

Fbest ∆C(X̃best) on 480 cores Finding SAT on 480 cores

Problem
∣

∣

∣
X̃best

∣

∣

∣
1 core 480

cores
inst. 1 inst. 2 inst. 3 inst. 1 inst. 2 inst. 3

Bivium16 31 1.65e7 3.44e4 3.42e4 3.36e4 3.42e4 1.10e3 2.33e4 2.67e4
Bivium14 35 6.84e7 1.42e4 1.34e5 1.32e5 1.33e5 3.95e2 9.10e4 9.18e4
Bivium12 37 2.63e8 5.50e5 4.95e5 4.83e5 5.28e5 3.04e5 1.39e5 1.89e5
Grain44 29 1.60e7 3.36e4 3.61e4 4.51e4 3.73e4 1.34e3 1.35e4 8.24e2
Grain42 29 6.05e7 1.26e5 1.35e5 1.30e5 1.20e5 6.92e4 1.07e5 9.15e4
Grain40 32 2.52e8 5.27e5 5.79e5 5.73e5 5.06e5 3.10e5 5.10e5 3.20e5

Table 3: Solving cryptanalysis problems for Bivium and Grain on a computing

cluster


