
Encoding Cryptographic Functions to SAT Using
TRANSALG System

Ilya Otpuschennikov1, Alexander Semenov1, Irina Gribanova1, Oleg Zaikin1, Stepan Kochemazov1

Abstract. In this paper we propose the technology for construct-
ing propositional encodings of discrete functions. It is aimed at solv-
ing inversion problems of considered functions using state-of-the-
art SAT solvers. We implemented this technology in the form of the
software system called TRANSALG, and used it to construct SAT en-
codings for a number of cryptanalysis problems. By applying SAT
solvers to these encodings we managed to invert several crypto-
graphic functions. In particular, we used the SAT encodings produced
by TRANSALG to construct the family of two-block MD5 collisions
in which the first 10 bytes are zeros. In addition to that we used
TRANSALG encoding for the widely known A5/1 keystream gener-
ator to solve several dozen of its cryptanalysis instances in a dis-
tributed computing environment. Also in the present paper we com-
pare the functionality of TRANSALG with that of similar software
systems.

1 FOUNDATIONS OF SAT-BASED
CRYPTANALYSIS

By {0, 1}∗ we denote the set of all binary words of an arbitrary fi-
nite length. By discrete functions we mean arbitrary (possibly, par-
tial) functions of the kind: f : {0, 1}∗ → {0, 1}∗. Hereinafter we
consider only total computable discrete functions. In other words we
assume that f is specified by some program (algorithm) Af , that has
finite runtime on each word from {0, 1}∗. The program Af spec-
ifies a family of functions of the kind fn : {0, 1}n → {0, 1}∗,
n ∈ N1. Below we consider the problem of inversion of an arbi-
trary function fn as follows: based on the known y ∈ Rangefn and
the known algorithm Af , find such x ∈ {0, 1}n that f(x) = y.
Many cryptanalysis problems can be formulated as inversion prob-
lems of discrete functions. For example, suppose that given a secret
key x ∈ {0, 1}n, fn generates a pseudorandom sequence (in gen-
eral, of an arbitrary length), that is later used to cipher some plaintext
via bit-wise XOR. Such a sequence is called a keystream. Knowing
some fragment of plaintext lets us know the corresponding fragment
of keystream, i.e. some word y for which we can consider the prob-
lem of finding such x ∈ {0, 1}n, that fn(x) = y. Regarding crypto-
graphic keystream generators this corresponds to the so called known
plaintext attack. Let us give another example. Total functions of the
kind f : {0, 1}∗ → {0, 1}c, where c is some constant, are called
hash functions. If n is the length of the input message and n > c,
then there exist such x1, x2, x1 ̸= x2, that fn(x1) = fn(x2). Such a
pair x1, x2 is called a collision of a hash function f . A cryptographic

1 Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Irkutsk, Russia, email: otilya@yandex.ru, biclop.rambler@yandex.ru,
the42dimension@gmail.com, zaikin.icc@gmail.com, veina-
mond@gmail.com

hash function is considered compromised if one is able to find colli-
sions of that function in reasonable time.

SAT-based cryptanalysis is a quite new direction in cryptanaly-
sis and its basic paradigm suggests that specific inversion problem
of a considered function is reduced to a SAT instance. Recall, that
Boolean Satisfiability Problem (SAT) consists in the following: for
an arbitrary Boolean formula to decide whether it is satisfiable or not.
Using the ideas by S.A. Cook [2] and J.C. King [6] it can be shown
that for an arbitrary function fn from the class described above, the
corresponding inversion problem can be effectively reduced to SAT
for some satisfiable CNF.

The main result of our paper is the TRANSALG software system
designed specifically to construct SAT encodings for cryptographic
functions and apply to constructed encodings state-of-the-art SAT
solvers. It is based on the concept of symbolic execution [6]. The
features of TRANSALG translation procedures were described in [9].
In the present paper we show how TRANSALG can be applied to
solving inversion problems of several cryptographic functions and
compare its effectiveness with that of similar systems: GRAIN OF

SALT [11], URSA [5], and CRYPTOL+SAW [4].
Let us now point out key differences between TRANSALG and

aforementioned systems. The distinctive feature of TRANSALG is
that it can construct and explicitly output the so-called template CNF
C(fn). When it constructs C(fn) it employs the concept of sym-
bolic execution of program Af fully reflecting this process in the
memory of abstract computing machine. As a result, in a template
CNF C(fn) all elementary operations with the memory of abstract
machine are represented in the form of Boolean equations over sets
of Boolean variables. TRANSALG makes it possible to work with
these variables directly, thus providing a number of useful features
for cryptanalysis. In particular, we can quickly generate families of
cryptographic instances: to make one SAT instance for function in-
version it is sufficient to add to a template CNF unit clauses encod-
ing the corresponding output. That is why template CNFs are very
handy when one uses partitioning strategy to solve some hard SAT
instance in a distributed computing environment. Also TRANSALG

can identify variables corresponding to inputs and outputs of consid-
ered function, so external tools can be used to check correctness of
SAT encodings and to analyze the results of solving SAT. In partic-
ular, thanks to this we can use any SAT solvers and preprocessors.
TRANSALG allows to monitor the values of program variables inside
program Af at any step of computing, and, therefore, to assert any
conditions on these variables. For example, thanks to this it is easy to
write in a program Af the conditions specifying the differential path
for finding collisions of cryptographic hash functions. In other con-
sidered systems (URSA, Cryptol) there arise significant difficulties
when writing such conditions. Finally, let us note that the connec-

tion between the structure of CNF C(fn) and an original algorithm,
reflected by TRANSALG, can play an important role in implementa-
tion of several cryptographic attacks (such as guess-and-determine
attacks [1]) in parallel.

2 SAT-BASED CRYPTANALYSIS OF SEVERAL
CRYPTOGRAPHIC SYSTEMS USING
TRANSALG

In the first series of experiments we considered SAT-based cryptanal-
ysis of the Bivium, Trivium and Grain keystream generators. Note
that similar problems were studied earlier in [3, 11, 12]. In accor-
dance with these papers we considered the inversion problems for
the following functions: fBivium : {0, 1}177 → {0, 1}200, fGrain :
{0, 1}160 → {0, 1}160, fTrivium : {0, 1}288 → {0, 1}300.

In our experiments we assumed that a number of bits from the se-
cret key are known. To these bits we will below refer as guessing bits
[1]. In other words, assume that we consider the inversion problem
of function fn : {0, 1}n → {0, 1}m in some point y ∈ Rangefn.
Let C(fn) be the template CNF for fn and let Xin be the set of vari-
ables encoding the input of fn. Let us choose as the set of guessing
bits some set X ′, X ′ ⊆ Xin. By GeneratorK we mean the SAT in-
stances which encode cryptanalysis of the corresponding generator,
modified by assigning values to variables from set X ′,|X ′| = K.
Essentially, GeneratorK means a series of SAT instances that differ
in values of variables from X ′. We considered such series of 100 in-
stances each. On instances from each series we ran state-of-the-art
CDCL SAT solvers that rated high in SAT competition 2014. In case
of the encodings produced by URSA we were forced to use only the
solvers CLASP and ARGOSAT embedded into this system. On av-
erage all considered tools constructed SAT encodings with more or
less similar solving time (for each system we tracked the best re-
sults using all solvers). In terms of SAT instances solved within the
time limit of one hour, TRANSALG lost to competition at most 6%
on Bivium30 and Trivium142, but won at least 30% on Grain102 .

Earlier we applied TRANSALG to perform the SAT-based crypt-
analysis of the widely known A5/1 keystream generator, that is still
used to cipher GSM traffic in many countries. In detail the corre-
sponding computational experiment was described in [10]. We man-
aged to solve non-weakened cryptanalysis instances for this gener-
ator in a specially constructed distributed environment. Note, that
it was possible to effectively parallelize this problem thanks to the
functional features of TRANSALG outlined above.

The next cryptanalysis problem we considered was the problem of
finding collisions of cryptographic hash functions MD4 and MD5.
The first successful application of SAT-solvers to this problem was
described in [8]. The authors of [8] note that to find one MD4 col-
lision it took them about 10 minutes (500 seconds), while finding
MD5 collisions proved to be more difficult. The SAT encodings for
the corresponding problems constructed using TRANSALG system
were much more compact than that from [8]. In our experiments in
less than 500 seconds it was possible to generate 1000 MD4 colli-
sions using one mainstream processor core (with the help of CRYP-
TOMINISAT SAT solver [12]). To find two-block MD5 collisions we
employed PLINGELING and TREENGELING SAT solvers. With their
help we found several dozens two-block MD5 collisions with first
10 zero bytes. Note, that we implemented a SAT variant of differ-
ential attack by X.Wang et al. [13]. With this purpose we added to
template CNF additional constraints encoding the differential path.
In the TRANSALG system thanks to its translation concept this step
can be performed effectively, while in other systems it requires sig-

nificant amount work to be implemented.
Finally we compared the effectiveness of SAT and SMT ap-

proaches to inversion of cryptographic functions. We performed
SAT-based cryptanalysis of Geffe generator [7], where the mixing
function was majority(x1, x2, x3). We considered the cryptanal-
ysis problem in the following form: to find 96-bit secret key using
the known keystream fragment of length 200 bits. We constructed a
series of 100 instances of this kind. Each instance was considered
both as SAT and as SMT. The SAT encodings were constructed us-
ing TRANSALG system and were solved using MINISAT solver. The
SMT encoding were constructed using CRYPTOL+SAW and solved
using SMT-solvers BOOLECTOR, YICES, CVC4 and Z3. In the con-
sidered series of experiments SMT approach lost to SAT in both the
number of problems solved within 1 minute (83 vs 100) and in aver-
age time on solved instances (35 seconds vs 7).

The extended version of this paper can be found online 2.

ACKNOWLEDGEMENTS
The research was funded by Russian Science Foundation (project no
16-11-10046).

REFERENCES
[1] Gregory V. Bard, Algebraic Cryptanalysis, Springer Publishing Com-

pany, Incorporated, 1st edn., 2009.
[2] Stephen A. Cook, ‘The complexity of theorem-proving procedures’, in

Proceedings of the 3rd Annual ACM Symposium on Theory of Comput-
ing, May 3-5, 1971, Shaker Heights, Ohio, USA, pp. 151–158, (1971).

[3] Tobias Eibach, Enrico Pilz, and Gunnar Völkel, ‘Attacking Bivium
using SAT solvers’, in SAT, eds., Hans Kleine Büning and Xishun
Zhao, volume 4996 of Lecture Notes in Computer Science, pp. 63–76.
Springer, (2008).

[4] Levent Erkök and John Matthews, ‘High assurance programming in
cryptol’, in Fifth Cyber Security and Information Intelligence Research
Workshop, CSIIRW ’09, Knoxville, TN, USA, April 13-15, 2009, eds.,
Frederick T. Sheldon, Greg Peterson, Axel W. Krings, Robert K. Aber-
crombie, and Ali Mili, p. 60. ACM, (2009).

[5] Predrag Janicic, ‘URSA: a System for Uniform Reduction to SAT’,
Logical Methods in Computer Science, 8(3), 1–39, (2012).

[6] James C. King, ‘Symbolic execution and program testing’, Commun.
ACM, 19(7), 385–394, (July 1976).

[7] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot, Hand-
book of Applied Cryptography, CRC Press, Inc., Boca Raton, FL, USA,
1st edn., 1996.

[8] Ilya Mironov and Lintao Zhang, ‘Applications of SAT solvers to crypt-
analysis of hash functions’, in SAT, eds., Armin Biere and Carla P.
Gomes, volume 4121 of Lecture Notes in Computer Science, pp. 102–
115. Springer, (2006).

[9] Ilya Otpuschemmikov, Alexander Semenov, and Stepan Kochemazov,
‘Transalg: a tool for translating procedural descriptions of discrete
functions to SAT’, in WCSE 2015-IPCE: Proceedings of The 5th Inter-
national Workshop on Computer Science and Engineering: Information
Processing and Control Engineering, pp. 289–294, (2015).

[10] Alexander Semenov and Oleg Zaikin, ‘Algorithm for finding partition-
ings of hard variants of boolean satisfiability problem with application
to inversion of some cryptographic functions’, SpringerPlus, 5(1), 1–
16, (2016).

[11] Mate Soos, ‘Grain of Salt - an automated way to test stream ciphers
through SAT solvers’, in Tools’10: Proceedings of the Workshop on
Tools for Cryptanalysis, pp. 131–144, (2010).

[12] Mate Soos, Karsten Nohl, and Claude Castelluccia, ‘Extending SAT
solvers to cryptographic problems’, in SAT, ed., Oliver Kullmann,
volume 5584 of Lecture Notes in Computer Science, pp. 244–257.
Springer, (2009).

[13] Xiaoyun Wang and Hongbo Yu, ‘How to break MD5 and other hash
functions’, in Advances in Cryptology - EUROCRYPT 2005, Proceed-
ings, pp. 19–35, (2005).

2 http://arxiv.org/abs/1607.00888

