Using Monte Carlo Method for Searching Partitionings
of Hard Variants of Boolean Satisfiability Problem

Alexander Semenov and Oleg Zaikin

Institute for System Dynamics and Control Theory SB RAS, Irkutsk sRus
biclop.rambler@yandex.ru, zaikin.icc@gmail.com

Abstract. In this paper we propose the approach for constructing partitionings of
hard variants of the Boolean satisfiability problem (SAT). Such partitiontags
be used for solving corresponding SAT instances in parallel. We sutgeap-
proach based on the Monte Carlo method for estimating time of procedsamg o
arbitrary partitioning. We solve the problem of search for a partitioning votidg
effectiveness via the optimization of the special predictive function teefinite
search space. For this purpose we use the tabu search strategycbnquta-
tional experiments we found partitionings for SAT instances encodiniglgrts

of inversion of some cryptographic functions. Several of these Sgtaintes with
realistic predicted solving time were successfully solved on a computingeclus
and in the volunteer computing project SAT@home. The solving time agreles
with estimations obtained by the proposed method.

Keywords: Monte Carlo method, SAT, partitioning, tabu search, cryplgsis

1 Introduction

The Boolean satisfiability problem (SAT) consists in thddwaing: for an arbitrary
Boolean formula (formula of the Propositional Calculus)exide if it is satisfiable,
i.e. if there exists such an assignment of Boolean varidhbes the formula that makes
this formula true. The satisfiability problem for a Booleamfiula can be effectively (in
polynomial time) reduced to the satisfiability problem foe formula in the conjunctive
normal form (CNF). Hereinafter by SAT instance we mean thisfiability problem for
some CNF.

Despite the fact that SAT is NP-complete (NP-hard as a seaaifiem) it is very
important because of the wide specter of practical appdinat A lot of combinatorial
problems from different areas can be effectively reduce@Ad [?]. In the last 10
years there was achieved an impressive progress in theiedfeess of SAT solving
algorithms. While these algorithms are exponential in thestvoase scenario, they
display high effectiveness on various classes of indugir@blems.

Because of the high computational complexity of SAT, theatiyment of methods
for solving hard SAT instances in parallel is consideredaadievant. Nowadays the
most popular approaches to parallel SAT solving@meafolio approach angartition-
ing approach P]. In the portfolio approach several copies of the SAT solacess
the same search space in different directions. The paitiipapproach implies that

2 A. Semenov, O. Zaikin

the original SAT instance is decomposed into a family of sabfems and this family
is then processed in a parallel or in a distributed compwimgronment. This family
is in fact a partitioning of the original SAT instance. Theli&pto independently pro-
cess different subproblems makes it possible to employysiems with thousands of
computing nodes for solving the original problem. Such apph allows to solve even
some cryptanalysis problems in the SAT form. However, ferdhme SAT instance one
can construct different partitionings. In this context theestion arises: if we have two
partitionings, how can we know if one is better than the ®h@r, if we look at this
from the practical point of view, how to find if not best paditing, then at least the
one with more or less realistic time required to processallstubproblems in it? In the
present paper we study these two problems.

2 Monte Carlo Approach to Statistical Estimation of Effectiveness
of SAT Partitioning

Let us consider the SAT for an arbitrary CNF. The partitioning ofC' is a set of
formulas
CNG,jed{l,... s} (1)

such that for any, j : < # j formulaC A G; A G; is unsatisfiable and
C=CANGyV...VCAGs.

(where ‘=" stands for logical equivalence). It is obvious that whee bias a partition-
ing of the original SAT instance, the satisfiability probkefor CNFs £7?) can be solved
independently in parallel.

There exist various partitioning techniquéd.[The results of the research on es-
timating the time required to process SAT partitionings barfound in a number of
papers on logical cryptanalysi8][[?7], [?]. In the present paper we propose to con-
struct time estimations for the processing of SAT partitigs using the Monte Carlo
method in its classical fornf].

Consider the satisfiability problem for an arbitrary CKFover a set of Boolean
variablesX = {z1,...,z,}. We call an arbitrary seX = {z;,,...,z;,}, X € X
a decomposition set. Consider a partitioning(ofthat consists of a set of = 2¢
formulas of the kind ??), whereG;, j € {1,...,2¢} are all possible minterms over
X. Note that an arbitrary formulé’; takes a value of true on a single truth assign-

ment (oﬂl ...,oﬂ) € {0,1}¢. Therefore, an arbitrary formul@ A G; is satisfiable
if and only if C [X/ (a{, . .7aj>} is satisfiable. Her€" [X/ (a{, . .,aj)} is pro-

duced by setting values of variables, to correspondingyi, ke{l,....d} oy =
1 = o). A set of CNFs

Ac(X) = {c [X/ (a{,...,aj)]}

d

(a{ aé)G{O,l}d

is called a decomposition family produced B. It is clear that the decomposition
family is the partitioning of the SAT instanc@.

Using Monte Carlo Method for Searching Partitionings 3

Consider some algorithm solving SAT. In the remainder of the paper we presume
that A is complete, i.e. its runtime is finite for an arbitrary inpte also presume that
Ais a non-randomized deterministic algorithm. We denotetheunt of time required

for A to solve all the SAT instances frofi () astc, A (X’) Below we concentrate

mainly on the problem of estimating: 4 (X)

Define the uniform distribution on the sg, 1}<. With each randomly chosen truth
assignmentas, ..., aq) from {0,1}¢ we associate a valug 4 (a1, ..., a,) that is
equal to the time required for the algorithito solve SAT forC' [X/ (o, ... ,ad)}.
Let¢l, ..., €9 be all the different values thdt 4 (o, .. ., ag) takes on all the possi-
ble (a1, ...,aq) € {0,1}%. Let us denot&q 4 (X) = {¢',...,€9}, and letz&? be

the number of(a1, ..., a4), such thatc 4 (a1,...,aq) = &. Thenéc 4 (X) is a

random variable with distributio® (qu (f()> = {p1,...,pq}, wherep, = ”25—;
ke{l,...,Q}. Thus, itis easy to see that

toa (X) = f (¢"-26") =27 B |goa (X)) 2)

k=1

To estimate the expected vaIEe{gq A (X’)} we will use the Monte Carlo method

[?], according to which, a probabilistic experiment, thatsists of NV independent ob-
servations of values of an arbitrary random variahie used to approximately calculate
E[¢]. Let ¢, ..., ¢ be the results of the corresponding observations. Fromhie t
retical basis of the Monte Carlo method it follows thatihas finite expected value

and finite variance, then the valde- Z ¢’ is a good approximation df [¢] when the

number of observations is large enough In our case fromgsenaption regarding the
completeness of the algorithrhit follows that random variabléc 4 (X) has finite ex-
pected value and finite variance. We would like to mention éimealgorithmA should
not use randomization, since if it does then the observacegah the general case will
not have the same distribution. The fact thatan be significantly less thaf makes

it possible to use the preprocessing stage to estimatefdwie¢ness of the considered
partitioning.

So the process of estimating the val@g)(for a givenX is as follows. We construct

a random sample’, ..., o", wherea! = (a{,...,aé), j € {l,...,N}is atruth

assignment of variables frof§. Then consider value§ = ¢c 4 (o) ,j =1,...,N
and calculate the value

Fea(X)=2"" éﬁc . (3)

By the above, ifN is large enough then the value B§ 4 X) can be considered
as a good approximation oP®). Therefore, instead of searching for a decomposition

4 A. Semenov, O. Zaikin

set with minimal value??) one can search for a decomposition set with minimal value
of Fi 4 (-). Below we refer to functioFc 4 (-) aspredictive function.

3 Algorithm for Minimization of Predictive Function

As we already noted above, different partitionings of thes&AT instance can have
different values of¢ 4 (X) In practice it is important to be able to find partitionings

that can be processed in realistic time. Below we will dégcthe scheme of automatic
search for good partitionings that is based on the proceduranizing the predictive
function value in the special search space.

So we consider the satisfiability problem for some GNA.et X = {x1,...,2,}
be the set of all Boolean variables in this CNF axid— X be an arbitrary decomposi-
tion set. The sekX can be represented by the binary vegtoe (x1,. .., x»). Here

(lifreX
X,L{O,Zfl'z¢)z 716{17...,71}

With an arbitrary vectog € {0,1}" we associate the value of functiéi{x) computed
in the following manner. For vectgrwe construct the corresponding $é(it is formed
by variables fromX that correspond t@ positions iny). Then we generate a random

samplea!,...,a, od € {0,1}/%] and solve SAT for CNFE [f(/oﬂ}. For each
of these SAT instances we measife— the runtime of algorithm4 on the input
C [X/oﬂ}. After this we calculate the value dfc 4 (X) according to ??). As a

result we have the value d@f(y) in the considered point of the search space. Then we
solve the problen#'(x) — min over the se{0, 1}".

The minimization of functionF'(-) over {0, 1}" is considered as an iterative pro-
cess of transitioning between the points of the search sjgycé’, (x) we denote the
neighborhood of poing of radiusp in the search spadg, 1}". The point from which
the search starts we denoteas,;- We will refer to the decomposition set specified
by this point asX .. The current Best Known Value @ (-) is denoted byf..;. The
point in which theF,.,; was achieved we denote &8.s:- BY Xcenter WE denote the
point the neighborhood of which is processed at the curremhemt. \We call the point,
in which we computed the valug(-), a checked point. The neighborhoodv, (x) in
which all the points are checked is callelibcked neighborhood. Otherwise the neigh-
borhood is calledinchecked.

For the minimization ofF'(-) we employed the tabu search strateg@ly According
to this approach the points from the search space, in whichlwady calculated the
values of function¥'(-) are stored in special tabu lists, to which we refer below ds;to
andL.. The L, list contains only points with checked neighborhoods. Théist con-
tains checked points with unchecked neighborhoods. Belewnesent the pseudocode
of the tabu search algorithm féf(-) minimization.

In this algorithm the functiomarkPointInTabuLists(x, L1, L2) adds the point
x to L, and then marksc as checked in all neighborhoods of points frdp that
containy. If as a result the neighborhood of some pojhbecomes checked, the point

Using Monte Carlo Method for Searching Partitionings 5

Algorithm 1: Tabu search altorithm for minimization of the predictivadtion
Input: CNF C, initial point x start
Output: Pair {Xvest, Foest), WhereFy.,. is a prediction foiC, xpes: is a corresponding
decomposition set
1 <Xcentcr,Fbest> — <Xsta.'rt7F(Xsta7‘t)>
2 (L1, La) < (D, Xstart) // initialize tabu lists
3 repeat
4 bestValueUpdated <« false
5 repeat // check neighborhood
6
7
8
9

X < any unchecked point fromV, (xcenter)

computeF'(x)

markPointInTabulists(y, L1, L2) // update tabu lists
if F(x) < Fyest then

10 <Xbest, Fbest> — <Xa F(X»
11 bestValueUpdated < true

12 until N, (Xcenter) ischecked

13 if bestValueUpdated then Xcenter < Xbest
14
15 else Xcenter < getNewCenter (L2)
16
17 until timeExceeded() or Ly =0
8 return (xwest, Fbest)

[N

X’ is removed fromL, and is added td.;. If we have processed all the points in the

we choose some point frorhs. It is done via the functiogetNewCenter (Ls). TO
choose the new pointin this case one can use various hesridtithe moment the tabu
search algorithm chooses the point for which the total coiréictivity [?] of Boolean
variables, contained in the corresponding decomposigtristhe largest.

4 Computational Experiments

The algorithms presented in the previous section were img@feed as the MPI-program
PDSAT?! In PDSAT there is one leader process, all the other are cantgpptocesses

(each process corresponds to 1 CPU core). For every new poiat y (X) from

the search space the leader process creates a random sésipé&/d (we use neigh-
borhoods of radiup = 1). Each assignment from this sample in combination with

the original CNFC' define the SAT instance from the decomposition famlly (X)

These SAT instances are solved by computing processes.alhe of the predictive
function is always computed assuming that the decompadimily will be processed

by 1 CPU core. The fact that the processing\ef (f() consists in solving independent

! https://github.com/Nauchnik/pdsat

6 A. Semenov, O. Zaikin

subproblems makes it possible to extrapolate the estimabitained to an arbitrary par-
allel (or distributed) computing system. The computinggeisses use slightly modified
MINI SAT solver for solving SAT instances.

Below we present the results of computational experimentghich PDSAT was
used on the computing cluster “Academician V.M. Matrosov”eistimate the time
required to solve problems of logical cryptanalysis of th&/JA[?] and Bivium [?]
keystream generators. The SAT instances that encode thelsierps were produced
using the RANSALG system P]. All the estimations presented below are in seconds.

4.1 Time Estimations for Logical Cryptanalysis of A5/1

For the first time we considered the logical cryptanalysithefA5/1 keystream gener-
ator in [?]. In that paper we described the corresponding algorithatetail, therefore
we will not do it in the present paper. We considered the enyalysis problem for the
A5/1 keystream generator in the following form: given thel Hits of keystream we
needed to find the secret key of length 64 bits, which prodtiie&eystream (in accor-
dance with the A5/1 algorithm). During predictive functiminimization PDSAT used
random samples of sizZ§ = 10* SAT instances and worked for 1 day using 5 comput-
ing nodes (160 CPU cores in total) within the computing @dugdt'sing the tabu search
algorithm we found the sefy = {£C27 ey L1035 L20y +++3 L305 L39, L40y L42, --vy 1‘52}. We
compared the time estimations for this set with that of theodgposition seiS;, the
structure of which was described i?]] The S; set was constructed manually based on
the analysis of the algorithmic features of the A5/1 keystiegenerator. The value of
predictive function forS; is equal to 4.45140e+08, and 16 is equal to 4.64428e+08.

Since the obtained estimations turned out to be realistcdecided to solve non-
weakened cryptanalysis instances for A5/1. For this pwpasused the BOINC-based
volunteer computing project SAT@horién total we performed two computational
experiments on solving cryptanalysis of A5/1 in SAT@honmethe first experiment
we solved 10 cryptanalysis instances using fheset and in the second we solved
same 10 instances using the set. To construct the corresponding tests we used the
known rainbow-tables for the A5/1 algorithm. These tables/jgle about 88% prob-
ability of success when analyzing 8 bursts of keystream 9ild bits). We randomly
generated 1000 instances and applied the rainbow-tatdesitgie to analyze 8 bursts
of keystream, generated by A5/1. Among these 1000 instdheeainbow-tables could
not find the secret key for 125 problems. From these 125 instawe randomly chose
10 and in the computational experiments applied the SAT g to the analysis of
first bursts of the corresponding keystream fragments (1t&). bn all cases we suc-
cessfully found the secret keys.

4.2 Time Estimations for Logical Cryptanalysis of Bivium

The Bivium keystream generatd?][uses two shift registers. The first register contains
93 cells and the second contains 84 cells. To initialize thieear, a secret key of length

2 http://minisat.se
3 http://sat.isa.ru/pdsat/

Using Monte Carlo Method for Searching Partitionings 7

80 bit is put to the first register, and a fixed (known) inialion vector of length 80 bit
is put to the second register. All remaining cells are filldthvwzeros. An initialization
phase consists of 708 rounds during which keystream owtmdtireleased.

In accordance withq] we considered cryptanalysis problem for Bivium in the fol-
lowing formulation. Based on the known fragment of keysinege search for the val-
ues of all registers cells at the end of the initializatiomgh Therefore, in our experi-
ments we used the CNF encoding where the initialization@has omitted. Usually it
is believed that to uniquely identify the secret key it isfigidnt to consider keystream
fragment of length comparable to the total length of shiffisters. Here we followed
[?], [?] and set the keystream fragment length for Bivium cryptgsialto 200 bits.
In the role of X,,,,+ for the cryptanalysis of Bivium we chose the set formed by the
variables encoding the cells of registers of the generainsidered at the end of the
initialization phase. Further we refer to these variabkgating variables. Therefore

‘Xsmt = 177. During predictive function minimization PDSAT used randsam-

ples of sizeN = 10° SAT instances and worked for 1 day using 5 computing nodes
(160 CPU cores in total) within the computing cluster. Tinstiraations obtained for
the Bivium cryptanalysis i$},.,; = 3.769 x 1010,

In [?], [?] @ number of time estimations for logical cryptanalysis afiégm were
proposed. In particular, ir?] several fixed types of decomposition sets were analyzed.
Time estimation for the best decomposition set fr@rig equal tol.637 x 10'3, it was
calculated using random samples of sifé. Authors of [?] constructed estimations for
the sets of variables chosen during the solving processxrapelated the estimations
obtained to time points of the solving process that lay indiséant future. Apparently,
as itis described ir, the random samples of sizé% and10? were used. In the Table
?? all three estimations mentioned above are demonstratesl p&formance of one
core of the processor we used in our experiments is compawnathl that of one core of
the processor used iff][

Table 1: Time estimations for the Bivium cryptanalysis peo

Source |Sample size |Time estimation
From [?] 10? 1.637 x 10"
From [7] 103 9.718 x 10™
Found by PDSAT10° 3.769 x 10T

To compare obtained time estimations with real solving tiwee solved several
weakened logical cryptanalysis problems for Bivium. Below use the notatioBivi-
umK to denote a weakened problem for Bivium with known valueK aftarting vari-
ables. We used the volunteer computing project SAT@homelte $ instances of
Biviumo. For all considered instances the time required to solvetheesponding in-
stances agrees well with our estimations. An extended arersi this paper can be
found online?

4 https://github.com/Nauchnik/Monte-Carlo-SAT/blob/master/Semenov-Moatto-SAT.pdf

8 A. Semenov, O. Zaikin

Acknowledgements The authors wish to thank Stepan Kochemazov for numerous
valuable comments. This work was partly supported by Radsgundation for Basic
Research (grants 14-07-00403-a and 15-07-07891-a) ankebyresident of Russian
Federation grant for young scientists SP-1184.2015.5.

