
Using Monte Carlo Method for Searching Partitionings
of Hard Variants of Boolean Satisfiability Problem

Alexander Semenov and Oleg Zaikin

Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
biclop.rambler@yandex.ru, zaikin.icc@gmail.com

Abstract. In this paper we propose the approach for constructing partitionings of
hard variants of the Boolean satisfiability problem (SAT). Such partitioningscan
be used for solving corresponding SAT instances in parallel. We suggest the ap-
proach based on the Monte Carlo method for estimating time of processing of an
arbitrary partitioning. We solve the problem of search for a partitioning with good
effectiveness via the optimization of the special predictive function overthe finite
search space. For this purpose we use the tabu search strategy. In our computa-
tional experiments we found partitionings for SAT instances encoding problems
of inversion of some cryptographic functions. Several of these SAT instances with
realistic predicted solving time were successfully solved on a computing cluster
and in the volunteer computing project SAT@home. The solving time agreeswell
with estimations obtained by the proposed method.

Keywords: Monte Carlo method, SAT, partitioning, tabu search, cryptanalysis

1 Introduction

The Boolean satisfiability problem (SAT) consists in the following: for an arbitrary
Boolean formula (formula of the Propositional Calculus) todecide if it is satisfiable,
i.e. if there exists such an assignment of Boolean variablesfrom the formula that makes
this formula true. The satisfiability problem for a Boolean formula can be effectively (in
polynomial time) reduced to the satisfiability problem for the formula in the conjunctive
normal form (CNF). Hereinafter by SAT instance we mean the satisfiability problem for
some CNF.

Despite the fact that SAT is NP-complete (NP-hard as a searchproblem) it is very
important because of the wide specter of practical applications. A lot of combinatorial
problems from different areas can be effectively reduced toSAT [?]. In the last 10
years there was achieved an impressive progress in the effectiveness of SAT solving
algorithms. While these algorithms are exponential in the worst case scenario, they
display high effectiveness on various classes of industrial problems.

Because of the high computational complexity of SAT, the development of methods
for solving hard SAT instances in parallel is considered to be relevant. Nowadays the
most popular approaches to parallel SAT solving areportfolio approach andpartition-
ing approach [?]. In the portfolio approach several copies of the SAT solverprocess
the same search space in different directions. The partitioning approach implies that

2 A. Semenov, O. Zaikin

the original SAT instance is decomposed into a family of subproblems and this family
is then processed in a parallel or in a distributed computingenvironment. This family
is in fact a partitioning of the original SAT instance. The ability to independently pro-
cess different subproblems makes it possible to employ the systems with thousands of
computing nodes for solving the original problem. Such approach allows to solve even
some cryptanalysis problems in the SAT form. However, for the same SAT instance one
can construct different partitionings. In this context thequestion arises: if we have two
partitionings, how can we know if one is better than the other? Or, if we look at this
from the practical point of view, how to find if not best partitioning, then at least the
one with more or less realistic time required to process all the subproblems in it? In the
present paper we study these two problems.

2 Monte Carlo Approach to Statistical Estimation of Effectiveness
of SAT Partitioning

Let us consider the SAT for an arbitrary CNFC. The partitioning ofC is a set of
formulas

C ∧Gj , j ∈ {1, . . . , s} (1)

such that for anyi, j : i 6= j formulaC ∧Gi ∧Gj is unsatisfiable and

C ≡ C ∧G1 ∨ . . . ∨ C ∧Gs.

(where “≡” stands for logical equivalence). It is obvious that when one has a partition-
ing of the original SAT instance, the satisfiability problems for CNFs (??) can be solved
independently in parallel.

There exist various partitioning techniques [?]. The results of the research on es-
timating the time required to process SAT partitionings canbe found in a number of
papers on logical cryptanalysis [?], [?], [?]. In the present paper we propose to con-
struct time estimations for the processing of SAT partitionings using the Monte Carlo
method in its classical form [?].

Consider the satisfiability problem for an arbitrary CNFC over a set of Boolean
variablesX = {x1, . . . , xn}. We call an arbitrary set̃X = {xi1 , . . . , xid}, X̃ ⊆ X
a decomposition set. Consider a partitioning ofC that consists of a set ofs = 2d

formulas of the kind (??), whereGj , j ∈ {1, . . . , 2d} are all possible minterms over
X̃. Note that an arbitrary formulaGj takes a value of true on a single truth assign-

ment
(

αj
1
, . . . , αj

d

)

∈ {0, 1}d. Therefore, an arbitrary formulaC ∧ Gj is satisfiable

if and only if C
[

X̃/
(

αj
1
, . . . , αj

d

)]

is satisfiable. HereC
[

X̃/
(

αj
1
, . . . , αj

d

)]

is pro-

duced by setting values of variablesxik to correspondingαj
k, k ∈ {1, . . . , d} : xi1 =

αj
1
, . . . , xid = αj

d. A set of CNFs

∆C(X̃) =
{

C
[

X̃/
(

αj
1
, . . . , αj

d

)]}

(αj
1
,...,α

j

d)∈{0,1}d

is called a decomposition family produced bỹX. It is clear that the decomposition
family is the partitioning of the SAT instanceC.

Using Monte Carlo Method for Searching Partitionings 3

Consider some algorithmA solving SAT. In the remainder of the paper we presume
thatA is complete, i.e. its runtime is finite for an arbitrary input. We also presume that
A is a non-randomized deterministic algorithm. We denote theamount of time required

for A to solve all the SAT instances from∆C

(

X̃
)

astC,A

(

X̃
)

. Below we concentrate

mainly on the problem of estimatingtC,A

(

X̃
)

.

Define the uniform distribution on the set{0, 1}d. With each randomly chosen truth
assignment(α1, . . . , αd) from {0, 1}d we associate a valueξC,A (α1, . . . , αd) that is

equal to the time required for the algorithmA to solve SAT forC
[

X̃/ (α1, . . . , αd)
]

.

Let ξ1, . . . , ξQ be all the different values thatξC,A (α1, . . . , αd) takes on all the possi-

ble (α1, . . . , αd) ∈ {0, 1}d. Let us denoteξC,A

(

X̃
)

=
{

ξ1, . . . , ξQ
}

, and let♯ξj be

the number of(α1, . . . , αd), such thatξC,A (α1, . . . , αd) = ξj . ThenξC,A

(

X̃
)

is a

random variable with distributionP
(

ξC,A

(

X̃
))

= {p1, . . . , pQ}, wherepk = ♯ξk

2d
,

k ∈ {1, . . . , Q}. Thus, it is easy to see that

tC,A

(

X̃
)

=

Q
∑

k=1

(

ξk · ♯ξk
)

= 2d · E
[

ξC,A

(

X̃
)]

. (2)

To estimate the expected valueE
[

ξC,A

(

X̃
)]

we will use the Monte Carlo method

[?], according to which, a probabilistic experiment, that consists ofN independent ob-
servations of values of an arbitrary random variableξ, is used to approximately calculate
E [ξ]. Let ζ1, . . . , ζN be the results of the corresponding observations. From the theo-
retical basis of the Monte Carlo method it follows that ifξ has finite expected value

and finite variance, then the value1
N

·
N
∑

j=1

ζj is a good approximation ofE [ξ] when the

number of observations is large enough. In our case from the assumption regarding the
completeness of the algorithmA it follows that random variableξC,A(X̃) has finite ex-
pected value and finite variance. We would like to mention that an algorithmA should
not use randomization, since if it does then the observed values in the general case will
not have the same distribution. The fact thatN can be significantly less than2d makes
it possible to use the preprocessing stage to estimate the effectiveness of the considered
partitioning.

So the process of estimating the value (??) for a givenX̃ is as follows. We construct

a random sampleα1, . . . , αN , whereαj =
(

αj
1
, . . . , αj

d

)

, j ∈ {1, . . . , N} is a truth

assignment of variables from̃X. Then consider valuesζj = ξC,A

(

αj
)

, j = 1, . . . , N
and calculate the value

FC,A

(

X̃
)

= 2d ·





1

N
·

N
∑

j=1

ζj



 . (3)

By the above, ifN is large enough then the value ofFC,A

(

X̃
)

can be considered

as a good approximation of (??). Therefore, instead of searching for a decomposition

4 A. Semenov, O. Zaikin

set with minimal value (??) one can search for a decomposition set with minimal value
of FC,A (·). Below we refer to functionFC,A (·) aspredictive function.

3 Algorithm for Minimization of Predictive Function

As we already noted above, different partitionings of the same SAT instance can have

different values oftC,A

(

X̃
)

. In practice it is important to be able to find partitionings

that can be processed in realistic time. Below we will describe the scheme of automatic
search for good partitionings that is based on the procedureminimizing the predictive
function value in the special search space.

So we consider the satisfiability problem for some CNFC. LetX = {x1, . . . , xn}
be the set of all Boolean variables in this CNF andX̃ ⊆ X be an arbitrary decomposi-
tion set. The set̃X can be represented by the binary vectorχ = (χ1, . . . , χn). Here

χi =

{

1, if xi ∈ X̃

0, if xi /∈ X̃
, i ∈ {1, . . . , n}

With an arbitrary vectorχ ∈ {0, 1}n we associate the value of functionF (χ) computed
in the following manner. For vectorχ we construct the corresponding setX̃ (it is formed
by variables fromX that correspond to1 positions inχ). Then we generate a random

sampleα1, . . . , αN , αj ∈ {0, 1}|X̃| and solve SAT for CNFsC
[

X̃/αj
]

. For each

of these SAT instances we measureζj — the runtime of algorithmA on the input

C
[

X̃/αj
]

. After this we calculate the value ofFC,A

(

X̃
)

according to (??). As a

result we have the value ofF (χ) in the considered point of the search space. Then we
solve the problemF (χ) → min over the set{0, 1}n.

The minimization of functionF (·) over {0, 1}n is considered as an iterative pro-
cess of transitioning between the points of the search space. By Nρ (χ) we denote the
neighborhood of pointχ of radiusρ in the search space{0, 1}n. The point from which
the search starts we denote asχstart. We will refer to the decomposition set specified
by this point asX̃start. The current Best Known Value ofF (·) is denoted byFbest. The
point in which theFbest was achieved we denote asχbest. By χcenter we denote the
point the neighborhood of which is processed at the current moment. We call the point,
in which we computed the valueF (·), a checked point. The neighborhoodNρ (χ) in
which all the points are checked is calledchecked neighborhood. Otherwise the neigh-
borhood is calledunchecked.

For the minimization ofF (·) we employed the tabu search strategy [?]. According
to this approach the points from the search space, in which wealready calculated the
values of functionF (·) are stored in special tabu lists, to which we refer below as toL1

andL2. TheL1 list contains only points with checked neighborhoods. TheL2 list con-
tains checked points with unchecked neighborhoods. Below we present the pseudocode
of the tabu search algorithm forF (·) minimization.

In this algorithm the functionmarkPointInTabuLists(χ,L1, L2) adds the point
χ to L2 and then marksχ as checked in all neighborhoods of points fromL2 that
containχ. If as a result the neighborhood of some pointχ′ becomes checked, the point

Using Monte Carlo Method for Searching Partitionings 5

Algorithm 1: Tabu search altorithm for minimization of the predictive function
Input : CNFC, initial pointχstart

Output : Pair〈χbest, Fbest〉, whereFbest is a prediction forC, χbest is a corresponding
decomposition set

1 〈χcenter, Fbest〉 ← 〈χstart, F (χstart)〉
2 〈L1, L2〉 ← 〈∅, χstart〉 // initialize tabu lists

3 repeat
4 bestValueUpdated← false

5 repeat // check neighborhood

6 χ← any unchecked point fromNρ(χcenter)
7 computeF (χ)
8 markPointInTabuLists(χ,L1, L2) // update tabu lists

9 if F (χ) < Fbest then
10 〈χbest, Fbest〉 ← 〈χ, F (χ)〉
11 bestValueUpdated← true

12 until Nρ(χcenter) is checked
13 if bestValueUpdated then χcenter ← χbest

14

15 else χcenter ← getNewCenter(L2)

16

17 until timeExceeded() or L2 = ∅
18 return 〈χbest, Fbest〉

χ′ is removed fromL2 and is added toL1. If we have processed all the points in the
neighborhood ofχcenter but could not improve theFbest then as the new pointχcenter

we choose some point fromL2. It is done via the functiongetNewCenter(L2). To
choose the new point in this case one can use various heuristics. At the moment the tabu
search algorithm chooses the point for which the total conflict activity [?] of Boolean
variables, contained in the corresponding decomposition set, is the largest.

4 Computational Experiments

The algorithms presented in the previous section were implemented as the MPI-program
PDSAT.1 In PDSAT there is one leader process, all the other are computing processes

(each process corresponds to 1 CPU core). For every new pointχ = χ
(

X̃
)

from

the search space the leader process creates a random sample of sizeN (we use neigh-
borhoods of radiusρ = 1). Each assignment from this sample in combination with

the original CNFC define the SAT instance from the decomposition family∆C

(

X̃
)

.

These SAT instances are solved by computing processes. The value of the predictive
function is always computed assuming that the decomposition family will be processed

by 1 CPU core. The fact that the processing of∆C

(

X̃
)

consists in solving independent

1 https://github.com/Nauchnik/pdsat

6 A. Semenov, O. Zaikin

subproblems makes it possible to extrapolate the estimation obtained to an arbitrary par-
allel (or distributed) computing system. The computing processes use slightly modified
M INI SAT solver2 for solving SAT instances.

Below we present the results of computational experiments in which PDSAT was
used on the computing cluster “Academician V.M. Matrosov” to estimate the time
required to solve problems of logical cryptanalysis of the A5/1 [?] and Bivium [?]
keystream generators. The SAT instances that encode these problems were produced
using the TRANSALG system [?]. All the estimations presented below are in seconds.

4.1 Time Estimations for Logical Cryptanalysis of A5/1

For the first time we considered the logical cryptanalysis ofthe A5/1 keystream gener-
ator in [?]. In that paper we described the corresponding algorithm indetail, therefore
we will not do it in the present paper. We considered the cryptanalysis problem for the
A5/1 keystream generator in the following form: given the 114 bits of keystream we
needed to find the secret key of length 64 bits, which producesthis keystream (in accor-
dance with the A5/1 algorithm). During predictive functionminimization PDSAT used
random samples of sizeN = 104 SAT instances and worked for 1 day using 5 comput-
ing nodes (160 CPU cores in total) within the computing cluster. Using the tabu search
algorithm we found the setS2 = {x2, ..., x10, x20, ..., x30, x39, x40, x42, ..., x52}. We
compared the time estimations for this set with that of the decomposition setS1, the
structure of which was described in [?]. TheS1 set was constructed manually based on
the analysis of the algorithmic features of the A5/1 keystream generator. The value of
predictive function forS1 is equal to 4.45140e+08, and forS2 is equal to 4.64428e+08.

Since the obtained estimations turned out to be realistic, we decided to solve non-
weakened cryptanalysis instances for A5/1. For this purpose we used the BOINC-based
volunteer computing project SAT@home.3 In total we performed two computational
experiments on solving cryptanalysis of A5/1 in SAT@home. In the first experiment
we solved 10 cryptanalysis instances using theS1 set and in the second we solved
same 10 instances using theS2 set. To construct the corresponding tests we used the
known rainbow-tables for the A5/1 algorithm. These tables provide about 88% prob-
ability of success when analyzing 8 bursts of keystream (i.e. 914 bits). We randomly
generated 1000 instances and applied the rainbow-tables technique to analyze 8 bursts
of keystream, generated by A5/1. Among these 1000 instancesthe rainbow-tables could
not find the secret key for 125 problems. From these 125 instances we randomly chose
10 and in the computational experiments applied the SAT approach to the analysis of
first bursts of the corresponding keystream fragments (114 bits). In all cases we suc-
cessfully found the secret keys.

4.2 Time Estimations for Logical Cryptanalysis of Bivium

The Bivium keystream generator [?] uses two shift registers. The first register contains
93 cells and the second contains 84 cells. To initialize the cipher, a secret key of length

2 http://minisat.se
3 http://sat.isa.ru/pdsat/

Using Monte Carlo Method for Searching Partitionings 7

80 bit is put to the first register, and a fixed (known) initialization vector of length 80 bit
is put to the second register. All remaining cells are filled with zeros. An initialization
phase consists of 708 rounds during which keystream output is not released.

In accordance with [?] we considered cryptanalysis problem for Bivium in the fol-
lowing formulation. Based on the known fragment of keystream we search for the val-
ues of all registers cells at the end of the initialization phase. Therefore, in our experi-
ments we used the CNF encoding where the initialization phase was omitted. Usually it
is believed that to uniquely identify the secret key it is sufficient to consider keystream
fragment of length comparable to the total length of shift registers. Here we followed
[?], [?] and set the keystream fragment length for Bivium cryptanalysis to 200 bits.
In the role ofX̃start for the cryptanalysis of Bivium we chose the set formed by the
variables encoding the cells of registers of the generator considered at the end of the
initialization phase. Further we refer to these variables as starting variables. Therefore
∣

∣

∣
X̃start

∣

∣

∣
= 177. During predictive function minimization PDSAT used random sam-

ples of sizeN = 105 SAT instances and worked for 1 day using 5 computing nodes
(160 CPU cores in total) within the computing cluster. Time estimations obtained for
the Bivium cryptanalysis isFbest = 3.769× 1010.

In [?], [?] a number of time estimations for logical cryptanalysis of Bivium were
proposed. In particular, in [?] several fixed types of decomposition sets were analyzed.
Time estimation for the best decomposition set from [?] is equal to1.637×1013, it was
calculated using random samples of size102. Authors of [?] constructed estimations for
the sets of variables chosen during the solving process and extrapolated the estimations
obtained to time points of the solving process that lay in thedistant future. Apparently,
as it is described in [?], the random samples of size102 and103 were used. In the Table
?? all three estimations mentioned above are demonstrated. The performance of one
core of the processor we used in our experiments is comparable with that of one core of
the processor used in [?].

Table 1: Time estimations for the Bivium cryptanalysis problem
Source Sample size Time estimation

From [?] 102 1.637× 1013

From [?] 103 9.718× 1010

Found by PDSAT105 3.769× 1010

To compare obtained time estimations with real solving timewe solved several
weakened logical cryptanalysis problems for Bivium. Belowwe use the notationBivi-
umK to denote a weakened problem for Bivium with known values ofK starting vari-
ables. We used the volunteer computing project SAT@home to solve 5 instances of
Bivium9. For all considered instances the time required to solve thecorresponding in-
stances agrees well with our estimations. An extended version of this paper can be
found online.4

4 https://github.com/Nauchnik/Monte-Carlo-SAT/blob/master/Semenov-Monte-Carlo-SAT.pdf

8 A. Semenov, O. Zaikin

Acknowledgements The authors wish to thank Stepan Kochemazov for numerous
valuable comments. This work was partly supported by Russian Foundation for Basic
Research (grants 14-07-00403-a and 15-07-07891-a) and by the President of Russian
Federation grant for young scientists SP-1184.2015.5.

