
Mikhail Posypkin∗, Alexander Semenov∗∗, Oleg Zaikin∗∗∗

USING BOINC DESKTOP GRID TO SOLVE LARGE SCALE
SAT PROBLEMS

Many practically important combinatorial problems can be efficiently reduced to a problem of
Boolean satisfiability (SAT). Therefore implementation of distributed algorithms for solving
SAT problems is of great importance. In this article we describe a technology for organizing
desktop grid, which is meant for solving SAT problems. This technology was implemented
in the form of volunteer computing project SAT@home based on popular BOINC platform.

Keywords: desktop grid, Boolean satisfiability problem (SAT), volunteer computing, BOINC

TITLE IN POLISH

Abstract in Polish.

Sowa kluczowe: Keywords in Polish

1. Introduction

Many practically important problems (model checking, problems of discrete systems
control, information security, etc) can be considered as Boolean satisfiability problems
(SAT) [1, 2]. SAT problems are hard and require lots of computational resources. That
is why using parallel and distributed computing to solve SAT problems became quite
popular nowadays. In this paper we further develop a technique for parallel solving of
SAT problems which was proposed in [3, 4, 5]. This approach relies on coarse-grained
work distribution and is therefore suitable for desktop grid (DG) systems. Organizing
the solving of SAT problems in a DG is challenging. There are currently few studies
in this area. Among recent works on SAT solving in DG the paper [6] should be
mentioned. In that paper a distributed SAT solver for peer-to-peer DG was proposed.
We propose another promising approach based on volunteer DG with client-server
architecture. This approach was implemented using BOINC [7] open source platform.

∗Institute for Systems Analysis of RAS, Moscow, Russia, posypkin@isa.ru
∗∗Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia,
biclop@rambler.ru

∗∗∗Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia,
zaikin.icc@gmail.com

29 stycznia 2012 str. 1/9



2. Volunteer computing

Volunteer (or desktop grid) computing is a relatively new trend in distributed com-
puting. Unlike service grids or clouds the computational resources are provided by
so-called “volunteers”. Volunteers are PC users who agree to donate their computing
resources for solving scientific problems. The desktop grid technology ensures that
only free resources (when the PC is not used for other purposes) are used, so the
participation in a volunteer computing project does not interfere with the user’s main
activity. The comprehensive overview of the desktop grid software can be found in
[8]. Below we outline the most popular DG systems.
XtremWeb[9] is an open source software to build a lightweight Desktop Grid

by gathering the unused resources of desktop computers (CPU, storage, network).
The XtremWeb architecture is composed of Servers, Workers and Clients. Server (or
a group of Servers) host centralized services such as scheduler and result collector.
Workers are installed by resource owners on their PCs to donate their computing
resources. Clients are installed by resource users on their PCs and permit users to
install applications and use distributed resources, submit jobs and retrieve results.
Jobs submitted by Client are registered on the Server and scheduled on Workers.
Within the XtremWeb architecture any Worker can be a Client.
The OurGrid[10] middleware makes it possible to create the so called peer-to-

peer computational grids. In the peer-to-peer grids created by OurGrid, computing
and storage resources are provided by a whole community of grid participants. The
resources are shared in such a way that those participants who have contributed the
most get the most out of the grid resources whenever they need them. The software is
written in Java. OurGrid is an open-source software distributed under GPL license.
Condor[11] is a high-throughput distributed batch computing system developed

at the University of Wisconsin-Madison, USA. Condor can be used to manage a cluster
of dedicated computing nodes. Condor can be configured to only use desktop machines
where the keyboard and mouse are idle. Should the system detect that a machine is no
longer available (i.e if a key press detected) Condor is able to transparently produce
a checkpoint and migrate a job to a different machine. Condor does not require a
shared file system across machines - if no shared file system is available, it can transfer
the job’s data files on behalf of the user, orbe able to transparently redirect all the
job’s I/O requests back to the submit machine. As a result, Condor can be used to
seamlessly combine all of an organisation’s computational power into one resource.
BOINC (Berkeley Open Infrastructure for Network Computing [7]) is an open

source platform for Desktop Grid computing. It is being developed at U.C. Berkeley
Spaces Sciences Laboratory by the group that developed and continues to operate the
SETI@home project. The BOINC software consists of two parts: server software that is
used to create volunteer computing projects and client software. Each project operates
its own server and provides its own web site. Volunteers install and run client software
on their computers. The client software is available for all major platforms, including
Windows, Linux,and Mac OS X. Volunteers can donate free computing power of their

29 stycznia 2012 str. 2/9



PCs by connecting installed BOINC clients to different BOINC projects. In the last
decade BOINC projects helped to obtain several remarkable scientific results e.g. new
pulsars discovered by Einstein@home project.
From this big diversity of desktop grid software we selected BOINC as the most

reliable platform for volunteer computing that has proved the ability to collect and
maintain huge distributed projects. To the best of our knowledge BOINC has not been
used yet to solve SAT problems but many BOINC projects demonstrated remarkable
efficiency when applied to various combinatorial problems.

3. Parallelization of SAT problems encoding some
combinatorial problems

Boolean satisfiability problem (SAT [1, 2]) is to find a satisfying assignment for a
Boolean formula represented by a Conjunctive Normal Form (CNF). SAT is a NP-hard
problem, i.e. it cannot be solved by any known polynomial time algorithm. However,
this problem is extremely important for various practical applications: verification
problems in microelectronics, discrete optimization, cryptography, analysis of discrete
automaton models, etc. Many of the problems from these areas can be efficiently
(in polynomial time) reduced to SAT. Over the past 10 years, an interest to the
construction of computational algorithms for solving SAT problems has significantly
increased. Since 2002, specialized SAT solver competitions are regularly held (see [2]).
The vast majority of efficient sequential SAT solvers are based on non-

chronological version of algorithm DPLL [12, 13]. Parallel SAT solvers started to
massively appear quite recently, despite the fact that first theoretical works on the
parallelization of algorithm DPLL had been published already in the 1990s [14]. Par-
allel SAT solvers competitions are held regularly since 2008 [2]. Many modern parallel
SAT solvers ([15, 16, 17], etc.) involve intensive exchange of Boolean constraints (so-
called “conflict clauses”) accumulated in parallel on different computing nodes. That
is why the use of such solvers in grids is quite problematic. Nevertheless there are
some examples of distributed SAT solvers. The paper [6] describes a distributed SAT
solver that uses peer-to-peer protocol to exchange constraints among DG nodes. To
the best of our knowledge there are no published result on application of client-server
desktop grids to SAT problems.
In our paper we propose an approach that is designed for volunteer computing

and implies no data exchange among computing nodes. The approach is based on the
coarse-grained parallelization of a SAT problem. The original problem is decomposed
by assigning values to a set of selected variables. Since all variables are binary we
obtain 2n subproblems for n selected variables. Then the resulting subproblems are
processed independently on different nodes of a distributed system. The key issue
affecting the efficiency of the proposed approach is the proper selection of variables
for assignment. For this purpose a meticulous research of the original combinatorial
problem is performed. This research is carried out in a preprocessing stage and its
result is a list of tasks. In particular for the original CNF we construct some family

29 stycznia 2012 str. 3/9



of subsets of the set of its Boolean variables. Each subset is associated with a value
of a special predictive function. Argument of this function is a random sample of
assignments of variables from the subset. Value of a predictive function gives an
estimation of the total time of solving the original SAT-problem in a distributed
environment. We perform the optimization of the predictive function to obtain the
subset with minimal prediction value. This subset we call the decomposition set and
use it to construct the list of tasks. Note that when searching for the decomposition
set it makes sense to analyze in detail the features of the original problem and use
this information to improve the efficiency of predictive function optimization.
In [3, 4, 5] this approach was applied to cryptanalysis of some keystream gen-

erators. In most of these generators so-called linear feedback shift registers (LFSRs
[18]) are used as primitives. Including to decomposition set a variables which encode
whole initial state of some LFSR greatly simplifies tasks in a list. In [5] it was shown
that the use of this parallelization technique for solving of the SAT problems encoding
cryptanalysis problems in some cases can lead to superlinear speedup.
The preprocessing stage may require the resources of a parallel computer (usually

the use of low performance cluster is sufficient for this purpose). However, the total
computational cost of this step is significantly less than that would later be used
for processing the constructed list of tasks. As a result of processing of this list we
obtain the solution of the original problem. The processing of the list is performed
by independent of each other’s hosts of DG (usually individual PCs). To control the
processing of the list (dispatch tasks, receive and analyze the results) a dedicated
server is used.
In 2009 this approach was implemented in a distributed environment (compris-

ing several supercomputes) and applied to cryptanalysis of widely known keystream
generator A5/1. Corresponding results can be found in [4].
It should be specifically noted that we consider cryptanalysis problems only as

hard tests. We believe that the successful testing of computing technology on cryp-
tographic tests means principal applicability of this technology for solving practically
important complex combinatorial problems (in the form of SAT problems) that are
not artificially designed to be hard, for example: discrete optimization problems (i.e.
QAP [19]), the search for some interesting combinatorial structures (i.e. mutually
orthogonal latin squares [20]), bioinformatics [21], etc.
The above results and considerations stimulated our research towards the con-

struction of the volunteer computing project for solving SAT problems.

4. Volunteer computing project SAT@home

We created a special BOINC project SAT@home [22] aimed at solving various SAT
problems. This project launched September 29, 2011 now has near 3000 volunteer
PCs connected. The project was created with the help of SZTAKI Desktop Grid
package [23] which is a featured BOINC distribution. Both server and client parts
of a distributed SAT solver were implemented using DC-API library [24]. The server

29 stycznia 2012 str. 4/9



Server part 
of distributed 
SAT solver

BOINC 
daemons

Database of
the project

BOINC-client
Client part of solver

PC 1

BOINC-client
Client part of solver

PC 2

...

Fig. 1. The scheme of the distributed solver in SAT@home

CNF 
(Conjuctive 

Normal Form) 
in DIMACS 

format

Search for 
parameters of 
decomposition

Desomposition 
and solving

Satisfying 
assignment 
or "UNSAT"

Fig. 2. The scheme of solving SAT problems in SAT@home

part is responsible for creating tasks in the project database as well as for processing
results collected from client PCs. Sending tasks to the client PCs and collecting results
is performed by standard BOINC daemons (see figure 1).

Client part is based on publicly available SAT solver minisat 1.14.1 [25] modified
to take into account peculiarities of CNFs encoding the original problems. The client
part is executed on volunteers’ PCs

The scheme of solving SAT problems in SAT@home is shown in figure 2. For a
particular SAT problem (CNF in DIMACS format [2]) we find “good” decomposition
parameters with the help of predictive functions technique described above. The pa-
rameters include: a type of SAT solver, a variables selection method and a number
of subproblems. We use ISDCT RAS cluster Blackford [26] to find the decomposi-
tion parameters since these computations involve intensive interprocessor exchanges.
This step takes quite a little amount of time (about several hours). The obtained
parameters are used by the server part of the SAT@home project for decomposing
the original problem into a number of independent subproblems. These subproblems
are then submitted as new BOINC workunits (tasks) in the project database.

On January 26, 2012 SAT@home has the following characteristics:

• 1002 participants;
• 2891 PCs, in total 11281 processor cores, 78 % with Windows OS

29 stycznia 2012 str. 5/9



0

500

1000

1500

2000

2500

3000

3500

29.09.2011 29.10.2011 29.11.2011 29.12.2011

Fig. 3. The dynamics of the number of PCs connected to SAT@home

• client parts of the application for windows x86, linux x86, linux x64;
• average real performance 1.5 TFLOPs, peak performance 4.3 TFLOPs.
Figure 3 shows the dynamics of the number of PCs connected to the project

from September 29 to January 26 2011. Each column displays the total number of
PCs connected to the project from its start to specific date. It is easy to see that the
number of PCs has significantly increased from October 10. The reason is that on this
day the project was added to the statistical site Free-DC [27] (it contains information
about BOINC projects), and that an export of statistics was enabled, allowing other
statistical sites to add the project to their lists. Availability of information about the
project on major statistical sites is an important factor for attracting new users. In
figure 4 a dynamics of the real performance of the project in GFLOPs is shown. The
increase of performance from November 24 to December 1 is due to the fact that the
site BOINCStats ran a competition on SAT@home so a lot of users from all over the
world desired to participate in it.
Currently processing of one task on client PC takes about 3 hours. The main

resource needed by application is CPU, at the same time only 20 Mb of RAM and
100 Mb of disk storage are used. Deadline of every task is 14 days. Every 2–5 minutes
checkpointing is performed. It prevents the loss of intermediate results caused by
extraordinary shutdown of a client PC.
Nowadays the most effective way of cryptanalysis of this generator is the so-called

“rainbow method” considered in [28]. The advantage of this method is its realtively low
computational cost that allows to perform cryptanalysis on an ordinary PC (it requires
downloading 1.6 Tb of rainbow tables from [28]). However, the main disadvantage of
this method is that rainbow tables do not cover the whole key space. These tables

29 stycznia 2012 str. 6/9



Fig. 4. The dynamics of real performance of SAT@home (GFLOPs)

cover around 88 % of the key space. For testing SAT@home project we selected 10
problems for which rainbow method does not give any result. At the moment 4 of 10
problems have been successfully solved in SAT@home [29]. On average, the solving of
each test in the project took 10 days.

5. Conclusion

In this article we described general principles of coarse grained parallelization of SAT
problems aimed at large-scale distributed system. This approach was implemented
in SAT@home volunteer computing project. This project can be used for solving
various computationally difficult combinatorial problems reduced to SAT problems.
The project has successfully solved several instances of the inversion problem of the
keystream generator A5/1, for which well-known rainbow-method [28] did not yield
any results. We hope that SAT@home will be useful to researchers who work with
computationally difficult combinatorial problems in such areas as discrete optimiza-
tion, cryptography, combinatorics [20], bioinformatics [21].

Acknowledgements

The preliminary results were presented at CGW’11 (http://www.cyfronet.pl/cgw11/).
This work was supported by Russian Foundation for Basic Research (Grants No. 11-
07-00377-a and No. 10-07-00301-a) and European Union Seventh Framework Pro-
gramme (FP7/2007–2013) under grant agreement No. 261561 (DEGISCO). We would
like to thank all the volunteers participating in the project.

References

[1] Eds. Biere A., Heule M., van Maaren H., Walsh T.: Handbook of Satisfiability.
IOS Press, 2009.

[2] Up-to-date links for the SATisfiability Problem http://www.satlive.org/

29 stycznia 2012 str. 7/9



[3] Zaikin O., Semenov A.: Large-block parallelism technology in SAT problems (in
Russian). Control sciences, no. 1, 2008, 43–50.

[4] Semenov A., Zaikin O., Bespalov D., Posypkin M.: Parallel logical cryptanalysis
of the generator A5/1 in BNB-Grid system. Lecture Notes in Computer Science,
vol. 6873, 2011, 473–483.

[5] Semenov A., Zaikin O., Bespalov D., Posypkin M.: Parallel algorithms for SAT in
application to inversion problems of some discrete functions. arXiv:1102.3563v1
[cs.DC].

[6] Schulz S., Blochinger W.: Parallel SAT Solving on Peer-to-Peer Desktop Grids.
Journal Of Grid Computing, vol. 8, no. 3, 2010, 443–471.

[7] Anderson D.P.: Boinc: A system for public-resource computing and storage. In
Fifth IEEE/ACM International Workshop on Grid Computing, 2004, 4–10.

[8] Desktop Grids for eScience, - A Road map. Produced by DEGISCO.
http://desktopgridfederation.org/documents/10508/57919/RoadMapD.pdf

[9] Cappello F., Djilali S., Fedak G., Herault T., Magniette F., Neri V., Lodygensky
O.: Computing on Large Scale Distributed Systems: XtremWeb Architecture, Pro-
gramming Models,Security, Tests and Convergence with Grid Future Generation
Computer Science, 2005, 417–437.

[10] Cirne W., Brasileiro F., Andrade N, Costa L.B., Andrade A., Novaes R., Mowbray
M.: Labs of the World, Unite!!! Journal of Grid Computing, vol. 4, issue 3, 2006,
225–246.

[11] Litzkow M., Livny M., Mutka M.: Condor — A Hunter of Idle Workstations. In
Proc. The 8th International Conference of Distributed Computing Systems, San
Jose, California, June, 1988, 204-111.

[12] Davis M., Logemann G., Loveland D.: A machine program for theorem proving.
Communication of the ACM, vol. 5, 1962, 394–397.

[13] Marqeus-Silva J.P., Sakallah K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, vol. 48, no. 5, 1999, 506–521.

[14] Bohm M., Speckenmeyer E.: A fast parallel SAT solver — efficient workload
balancing. Annals of Mathematics and Artificial Intelligence, vol. 17, no. 2, 1996,
381–400.

[15] Hamadi Y., Jabbour S., Sais L.: ManySAT: a Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation, Special Issue on Parallel SAT
Solving, vol. 6, 2009, 245-262.

[16] Schubert T., Lewis M., Becker B.: PaMiraXT: Parallel SAT Solving with Threads
and Message Passing. Journal on Satisfiability, Boolean Modeling and Computa-
tion, vol. 6, 2009, 203-222.

[17] Soos M., Nohl K., Castelluccia C.: Extending SAT Solvers to Cryptographic Prob-
lems. Lecture Notes in Computer Science, vol. 5584, 2009, 244-257.

[18] Menezes A., Van Oorschot P., Vanstone S.: Handbook of Applied Cryptography.
USA, CRC Press, 1996.

[19] Quadratic Assignment Problem Library http://www.seas.upenn.edu/qaplib/

29 stycznia 2012 str. 8/9



[20] Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs. Chapman &
Hall / Taylor & Francis, 2007.

[21] Eds. Bower J. M., Bolouri H.: Computational Modeling of Genetic and Biochem-
ical Networks, MITPress, 2004.

[22] Volunteer computing project SAT@home http://sat.isa.ru/pdsat/
[23] Kacsuk P., Kovacs J., Farkas Z., Marosi A. C., Gombas G., Balaton Z.: SZTAKI
Desktop Grid (SZDG): A Flexible and Scalable Desktop Grid System. Journal Of
Grid Computing, vol. 7, no. 4, 2009, 439–461.

[24] Balaton Z., Gombas G., Kacsuk P., Kornafeld A., Kovacs J., Marosi A. C., Vida
G., Podhorszki N., Kiss T.: Sztaki desktop grid: a modular and scalable way of
building large computing grids. In Proc. of the 21th Int. Parallel and Distributed
Processing Symposium, Long Beach, California, USA, 2007, 1–8.

[25] The MiniSat page http://minisat.se/MiniSat.html
[26] Supercomputer center of ISDCT SB RAS http://www.mvs.icc.ru/
[27] Distributed computing stats system Free-DC http://stats.free-dc.org/
[28] A5/1 Cracking project http://reflextor.com/trac/a51/wiki
[29] Solutions found in SAT@home http://sat.isa.ru/pdsat/solutions.php

29 stycznia 2012 str. 9/9


