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Abstract. In logical cryptanalysis a problem of search of a secret key of
a cryptographic system is formulated as a SAT problem, i.e. problem of
search of a satisfying assignment for some CNF. In this paper we consider
natural strategies for parallelization of these SAT problems. We apply
coarse-grained approach which makes it possible to use distributed com-
puting environments with slow interconnect. The main practical result
of this paper is successful logical cryptanalysis of keystream generator
A5/1 in BNB-Grid system.
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1 Introduction

The idea of using SAT-solvers for the problems of cryptanalysis was first intro-
duced in [1]. Term “logical cryptanalysis” itself was proposed in [2]. Examples
of successful application of SAT approach to cryptanalysis of some weak stream
ciphers are shown in [3], [4], [5]. However, to the best of our knowledge there
are no results of successful use of parallel algorithms in logical cryptanalysis of
widely used stream encryption systems.

In this paper we consider the problem of parallel logical cryptanalysis of
stream the generator A5/1 which is used to encrypt GSM-traffic. According
to basic principles of logical cryptanalysis we reduce a problem of cryptanal-
ysis of the generator A5/1 to a SAT-problem. Then we use special technique
of parallelization to solve the SAT-problem obtained. This technique exploits
peculiarities of the original SAT problem to decompose it into a large set of
independent sub-problems. This approach was implemented in the BNB-Grid
framework [6] specially developed for solving large scale problems in a hetero-
geneous distributed systems. Using this approach we were able to successfully
perform the cryptanalysis of the generator A5/1 in reasonable time.
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We also experimentally proved that the same keystream of arbitrary length
can be generated from different secret keys and identified all such keys for the
particular 144-bit fragment of keystream.

2 Reducing Cryptanalysis of the Generator A5/1 to SAT

In this section we give general formulation of cryptanalysis problem for key-
stream generators and describe the procedure of reduction of this problem to
SAT. Let fn,

fn : {0, 1}n → {0, 1}∗,

be a discrete function defined by the algorithm of the generator, that produces a
keystream from a secret key x ∈ {0, 1}n. We consider the problem of cryptanaly-
sis of keystream generator on the basis of a known keystream. The problem is to
find the secret key using some fragment of a keystream and a known algorithm
of its generation. It is easy to see that this problem is equivalent to the problem
of inversion of function fn, i.e. the problem of finding such x ∈ {0, 1}n that
fn(x) = y if y ∈ range fn and an algorithm of computation of fn are known.

The first step of logical cryptanalysis consists in building a conjunctive nor-
mal form (CNF) encoding an algorithm of keystream generator. To obtain this
CNF we use Tseitin transformations which were proposed by G.S. Tseitin in
1968 in [7]. In these transformations original function is usually represented by
a Boolean circuit over an arbitrary complete basis, for example {&,¬}.

Let fn be a discrete function defined by an algorithm of generator. We will
consider fn as a function of Boolean variables from the set X = {x1, . . . , xn}.
Let S (fn) be Boolean circuit which represents fn over {&,¬}. Each variable
from X corresponds to one of n inputs of S (fn). For each logic gate G some
new auxiliary variable v (G) is introduced. Every AND-gate G is encoded by
CNF-representation of Boolean function v (G) ↔ u&w. Every NOT-gate G is
encoded by CNF-representation of Boolean function v (G) ↔ ¬u. Here u and w
are variables corresponding to inputs of G. CNF encoding S (fn) is

&
G∈S(fn)

C (G) ,

where C (G) is CNF encoding gate G. Then(
&

G∈S(fn)
C (G)

)
· yσ1

1 · . . . · yσm
m

is CNF encoding the inversion problem of the function fn in point y = (σ1, . . . , σm).
Here

yσ =

{
ȳ, if σ = 0
y, if σ = 1

and y1, . . . , ym are variables corresponding to outputs of S (fn).
Quite often a structure of an algorithm calculating a cryptographic function

allows us to write a system of Boolean equations which encodes this algorithm
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directly without constructing Boolean circuit. Using Tseitin transformations we
can make a transition from the obtained system to one equation in the form
“CNF=1”.

Next, we consider the keystream generator A5/1 used to encrypt traffic in
GSM networks. Algorithm of this generator became publicly available in 1999
after reverse engineering performed by M. Briceno. A lot of attacks on this
cipher are described, however it is still actively used. The most recent attacks
used technique of rainbow tables [8], however this approach can not guarantee
the success in 100% of cases. Further we propose a new approach to cryptanalysis
of the generator A5/1 that uses parallel algorithms of solving SAT problems.

The description of the generator A5/1 (see Fig. 1) was taken from the paper
[9]. According to [9] the generator A5/1 contains three linear feedback shift
registers (LFSR, see, e.g., [10]), given by the following connection polynomials:
LFSR 1: X19 +X18 +X17 +X14 + 1; LFSR 2: X22 +X21 + 1; LFSR 3: X23 +
X22 +X21 +X8 + 1.

789 1

4039

2345610111213141516171819

2030313233343536373841

6261 53545556575859606364 52

212223242526272829

42434445464748495051

Fig. 1. Scheme of the generator A5/1.

The secret key of the generator A5/1 is the initial contents of LFSRs 1–3 (64
bits). In each unit of time τ ∈ {1, 2, . . . } (τ = 0 is reserved for the initial state)
two or three registers are shifted. The register with number r, r ∈ {1, 2, 3}, is
shifted if χτ

r (b
τ
1 , b

τ
2 , b

τ
3) = 1, and is not shifted if χτ

r (b
τ
1 , b

τ
2 , b

τ
3) = 0. By bτ1 , b

τ
2 , b

τ
3

we denote here the values of the clocking bits at the current unit of time. The
clocking bits are 9-th, 30-th and 52-nd. Corresponding cells in Fig. 1 are black.
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The function χτ
r (·) is defined as follows

χτ
r (b

τ
1 , b

τ
2 , b

τ
3) =

{
1, bτr = majority (bτ1 , b

τ
2 , b

τ
3)

0, bτr ̸= majority (bτ1 , b
τ
2 , b

τ
3)

where majority (A,B,C) = A ·B ∨A · C ∨B · C.
In each unit of time the values in the leftmost cells of the registers are added

mod 2, the resulting bit is the bit of the keystream.
Thus, we can see that the generator A5/1 updates the content of each of

the registers’ cells as a result of conditional shifts: if the shift does not occur,
then a new configuration of a register does not differ from the old one, otherwise
values of all cells of the register are updated. Hence with each cell at each unit
of time we can associate a Boolean equation linking a new state of the cell with
the previous one. Let variables x1, . . . , x64 encode the secret key of the generator
A5/1 (xi corresponds to cell with number i ∈ {1, . . . , 64}). By x1

1, . . . , x
1
64 we

denote variables encoding cells’ state in the moment of time τ = 1. System of
equations which links these two sets of variables is:

(
x1
1 ↔ x1 · χ1

1 ∨ (⊕i∈Ixi) · χ1
1

)
= 1(

x1
2 ↔ x2 · χ1

1 ∨ x1 · χ1
1

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1
20 ↔ x20 · χ1

2 ∨ (⊕j∈Jxj) · χ1
2

)
= 1(

x1
21 ↔ x21 · χ1

2 ∨ x20 · χ1
2

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1
42 ↔ x42 · χ1

3 ∨ (⊕k∈Kxk) · χ1
3

)
= 1(

x1
43 ↔ x43 · χ1

3 ∨ x42 · χ1
3

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1
64 ↔ x64 · χ1

3 ∨ x63 · χ1
3

)
= 1(

g1 ↔ x1
19 ⊕ x1

41 ⊕ x1
64

)
= 1

(1)

where I = {14, 17, 18, 19}, J = {40, 41}, K = {49, 62, 63, 64} and g1 is the first bit of
keystream.

Let g1, . . . , gL be the first L bits of the keystream of the generator A5/1. To the
each bit gi, i ∈ {1, . . . , L} we associate a system of the form (1). To find the secret key
it is sufficient to find a common solution of these systems. The problem of finding of
this common solution can be reduced by the means of Tseitin transformations to the
problem of finding a satisfying assignment of a satisfiable CNF.

3 Coarse-Grained Parallelization of the Problem of
Logical Cryptanalysis of the Generator A5/1

In this section we describe a technology for solving SAT problems in distributed com-
puting systems (hereinafter DCS). Such systems consist of sets of computing nodes
connected by a communication network. Each node of a DCS has one or several proces-
sors. Typical examples of DCS are computing clusters which have become widespread
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in recent years. The elementary computational units of modern DCS are cores of pro-
cessors.

We consider an arbitrary CNF C over the set of Boolean variables X = {x1, . . . , xn}
and select in the set X some subset

X ′ = {xi1 , . . . , xid} , {i1, . . . , id} ⊆ {1, . . . , n} ,

where d ∈ {1, . . . , n}. We call X ′ = {xi1 , . . . , xid} a decomposition set and d is the
power of the decomposition set. To the decomposition set X ′, |X ′| = d, we associate
the set Y (X ′) = {Y1, . . . , YK} consisting from K = 2d different binary vectors of the
length d, each of which is a vector of values of the variables xi1 , . . . , xid . By Cj = C|Yj ,
j = 1, . . . ,K, we denote the CNF obtained after substitutions of the values from the
vectors Yj to C. A decomposition family generated from the CNF C by the set X ′, is
the set ∆C (X ′), formed by the following CNFs:

∆C

(
X ′) = {C1 = C|Y1 , . . . , CK = C|YK} .

It is not difficult to see that any truth assignment α ∈ {0, 1}n satisfying C (C|α = 1)
coincides with some vector Y α ∈ Y (X ′) in the components from X ′ and coincides with
some satisfying assignment of the CNF C|Y α ∈ ∆C (X ′) in the remaining components.
In this case the CNF C is unsatisfiable if and only if all the CNF in ∆C (X ′) are
unsatisfiable. Therefore, the SAT problem for the original CNF C is reduced to K SAT
problems for CNFs from the set ∆C (X ′). For processing the set ∆C (X ′) as a parallel
task list a DCS can be used.

We use peculiarities of original problem to construct a decomposition set with
“good” properties. In logical cryptanalysis problems decomposition set is usually chosen
among the subsets of the set of input variables of cryptographic function considered.
For the logical cryptanalysis of A5/1 we propose to include into the decomposition set
X ′ the variables encoding the initial states of the cells of registers, starting with the
first cells until the cells containing clocking bits inclusive (corresponding cells in the
Fig. 2 are dark shaded). Thus, the decomposition set X ′ consists of 31 variables:

X ′ = {x1, . . . , x9, x20, . . . , x30, x42, . . . , x52} (2)
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Fig. 2. Scheme of a decomposition set consisting of 31 variables.
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This choice is motivated by the following considerations. Assigning values to all
variables from X ′ we determine the exact values of clocking bits for a large number of
subsequent states of all three registers. These clocking bits are the most informative
because they determine the value of the majority function.

Let C be the CNF encoding the problem of cryptanalysis of the generator A5/1
(see Section 2). By ∆A5/1 (X

′) we denote the decomposition family generated from the
CNF C by the set X ′ defined by (2). Thus |∆A5/1 (X

′) | = 231.

Further we describe a procedure of processing of ∆A5/1 (X
′) as a parallel task list

in DCS. Suppose that the considered DCS has M < 231 computing cores. Let us put
the CNFs of the family ∆A5/1 (X

′) in some order. We call an arbitrary CNF from
∆A5/1 (X

′) locked if at the current moment of time the SAT problem for it has either
been solved or is being solved on some core of the DCS. The other CNFs are called
free. We select first M CNFs C1, . . . , CM from the family ∆A5/1 (X

′). For each of the
selected CNFs we solve the SAT problem on a separate core of the DCS. Once some
core is released we launch the procedure of solving of the SAT problem for the next free
CNF of the family ∆A5/1 (X

′) on this core. This process continues until a satisfying
assignment for some CNF from ∆A5/1 (X

′) is found, or until the unsatisfiability of all
CNFs from ∆A5/1 (X

′) is proven.

4 Modification of a SAT Solver for Solving the Problems
of Logical Cryptanalysis of the Generator A5/1

For solving of SAT problems from the decomposition family ∆A5/1 (X
′) solver we used

modified version of well-known SAT solver MiniSat-C v1.14.1 [11]. The first stage of
the modification consists in changing the decision variable selection procedure (see [12])
implemented in Minisat. Namely, a procedure of assignment of initial activity (different
from zero) for those variables in the CNF which correspond to the input variables of
the function was added. For the problems of cryptanalysis of generators this method
allows to select, on the initial stage of the solving process, the variables corresponding to
the secret key as priority variables for decision variable selection procedure. Also some
basic constants of the solver were changed. Like most of its analogs Minisat periodically
changes the activity of all the variables and clauses in order to increase the priority
of selection for variables from the clauses derived in the later steps of the search.
Moreover, in 2% of cases the Minisat assigns a value to a variable selected randomly,
rather than to the variable with the maximum activity. These heuristics show, on
average, good results on a broad set of test examples used in the competitions of SAT
solvers. However, for the CNFs encoding problems of cryptanalysis they are, usually,
not efficient. In all the experiments described below we use the SAT solver in which
periodical lowering of the activity and random selection of variables are prohibited. In
total, this simple change led to a substantial increase in efficiency of the SAT solver
on cryptographic tests. Unmodified SAT solvers Minisat-C v1.14.1 and Minisat 2.0
did not cope with CNFs from the decomposition family constructed during the logical
cryptanalysis of the generator A5/1, even in 10 minutes of work (the computations
were interrupted). The modified Minisat-C v1.14.1 solved these problems in less than
0.2 seconds on average.

In the preceding section a general procedure for parallel processing of a list of tasks
was described. During this procedure the control process monitors the load of comput-
ing cores and sends new tasks to the released cores. In practice, a direct implementation
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of this scheme leads to an excessive growth of transfer costs, but provides uniform load
of the cores.

The efficiency of a SAT solver in a DCS can be improved by using job batches. Each
job batch is a subset of the decomposition family ∆A5/1 (X

′). Sending batches instead
of single CNFs allows to reduce the cost of the transfer. We decompose ∆A5/1 (X

′)
into disjoint sets of job batches. The obtained set of the job batches is considered as
a task list where each job batch is a list item. For processing this task list we use the
technique described in the previous section.

The fact that a decomposition set is a set of Boolean variables makes the problem
of transferring the batches to the cores very simple. Indeed, let X ′ be decomposition
set defined by (2). And let M be the number of computing cores in the DCS. The core
with the number p ∈ {1, . . . ,M} we denote by ep. For the sake of simplicity, assume
that M = 2k, k ∈ N1, and k < 31. If we suppose that all the tasks in the decompo-
sition family ∆A5/1 (X

′) have approximately equal complexity, then when solving the
problem in the DCS each core is going to process approximately the same number of
tasks. This means that the decomposition family ∆A5/1 (X

′) can be partitioned into 2k

subfamilies of equal power and each subfamily can be further processed entirely on the
corresponding core. For this purpose select in X ′ some subset X ′

k of power k (X ′
k can

be formed, for example, by the first k variables from X ′). The description of the job
batch for a particular ep, p ∈

{
1, . . . , 2k

}
, is a binary vector αp of the length k, formed

by the values of variables from X ′
k. Next, for each ep, p = 1, . . . , 2k, we consider the

set Λp, consisting of 231−k different vectors of the length 31 of the form (αp|β), where
β takes all 231−k possible values from the set {0, 1}31−k.

Each core ep, p ∈
{
1, . . . , 2k

}
, receives its job batch from the control process

as a vector αp which is used for constructing the set Λp. A subfamily of the family
∆A5/1 (X

′) processed by ep is obtained as a result of substituting vectors from Λp to
CNF C which encodes the problem of cryptanalysis of the generator A5/1.

5 Implementation of Parallel Logical Cryptanalysis of the
Generator A5/1 in BNB-Grid System

We used the results of computational experiments to determine an approximate time
of logical cryptanalysis of the generator A5/1 on the “Chebyshev” cluster [13]. Ac-
cording to these results it would take about one day of “Chebyshev” work even if this
cluster is fully dedicated to this task. However, exclusive use of publically available su-
percomputers is usually not possible. Thus it was clear that for a successful solving of
cryptanalysis of the generator A5/1 we would need to combine computational powers
of several supercomputers.

We decided to use the BNB-Grid [6] software package aimed at harnessing hetero-
geneous distributed computing resources (called computing nodes) for solving complex
computational problems. This package has already proved its efficiency in solving sev-
eral large scale optimization problems [6, 14].

BNB-Grid is a generic framework for implementing optimization algorithms on dis-
tributed systems. The BNB-Grid tool can harness the consolidated power of computing
elements collected from service Grids, desktop Grids and standalone resources to solve
hard optimization and combinatorial problems. Adding different types of computa-
tional resources is available (e.g., Unicore service Grid, BOINC desktop Grid system).

On the top level of the BNB-Grid the object Computing Space Manager (CS-
Manager) is located. It decomposes the original problem into subproblems and dis-



8 Alexander Semenov, Oleg Zaikin, Dmitry Bespalov, Mikhail Posypkin

tributes them among the computing nodes. For each computing node there is a corre-
sponding object of the type Computing Element Manager (CE-Manager). CE-Manager
provides communication between CS-Manager and the corresponding computing node
and also starts and stops applications on this node. After receiving a task from the
CS-Manager, CE-Manager transfers it to the corresponding node and starts MPI ap-
plication BNB-solver which processes the received task on all available cores.

A module for processing SAT problems on a computing cluster was added to the
BNB-Solver. The input data of the control object CS-Manager is a description of the
original SAT problem in XML format. CS-Manager decomposes SAT problem for the
original CNF C and obtains decomposition family. We developed special technique of
job batches transfer for BNB-Grid system. Each job batch is a compact description of
a subset of the decomposition family. Sending of batches instead of single CNFs allows
to reduce the cost of the transfer.

The computations were carried out on a distributed system consisting of four com-
puting clusters (see [15]): MVS-100k (Joint Supercomputer Center of RAS), SKIF-MSU
Chebyshev (Moscow State University), cluster of RRC Kurchatov Institute, BlueGene
P (Moscow State University).

In our experiments three test problems of cryptanalysis of the generator A5/1 were
solved. During the computational experiment the number of simultaneously working
computing cores varied from 0 to 5568, averaging approximately 2–3 thousand cores.
For each test the computations stopped after finding the first satisfying assignment.
The first test problem was solved (the secret key of the generator was found) in 56
hours, the second and the third – in 25 and 122 hours respectively.

The problem of cryptanalysis of the generator A5/1 is also interesting because the
same keystream of arbitrary length can be generated from different secret keys. This
fact was noted by J. Golic in [16]. We denote these situations as “collisions” using
the evident analogy with the corresponding notion from the theory of hash functions.
The approach presented in this article allows us to solve the problem of finding all the
collisions of the generator A5/1 for a given fragment of a keystream. Using BNB-Grid
all collisions for one test problem (we analyzed the first 144 bits of keystream) were
found. It turned out that there are only three such collisions (see Table 1). Processing
this test problem by the distributed system described above took 16 days.

Table 1. Original key and collisions of the generator A5/1 (in hexadecimal format)

LFSR 1 LFSR 2 LFSR 3

x1, . . . , x19 x20, . . . , x41 x42, . . . , x64

original key 2C1A7 3D35B9 EEAF2

collision 2C1A7 3E9ADC EEAF2

collision 2C1A7 3D35B9 77579
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